Special Functions
George E. Andrews, Richard Askey, Ranjan Roy - Collection Encyclopedia of Mathematics and its Applications
Résumé
Special functions, natural generalizations of the elementary functions, have been studied for centuries. The greatest mathematicians, among them Euler, Gauss, Legendre, Eisenstein, Riemann, and Ramanujan, have laid the foundations for this beautiful and useful area of mathematics. For instance, Euler found the gamma function, which extends the factorial. The Bessel functions and Legendre polynomials play a role in three dimensions similar to the role of sine and cosine in two dimensions.
This treatise presents an overview of special functions, focusing primarily on hypergeometric functions and the associated hypergeometric series, including Bessel functions and classical orthogonal polynomials. The basic building block of the functions studied in this book is the gamma function. In addition to relatively new work on gamma and beta functions, such as Selberg's multi-dimensional integrals, a number of important but relatively unknown nineteenth century results are included.
The authors discuss Wilson's beta integral and the associated orthogonal polynomials. Some g-extensions of beta integrals and of hypergeometric series are presented with Bailey chains employed to derive some results. An introduction to spherical harmonies and applications of special functions to combinatorial problems are included. The book also deals with finite field versions of some beta integrals.
The authors provide organizing ideas, motivation, and historical background for the study and application of some important special functions. This clearly expressed and readable work can serve as a learning tool and lasting reference for students and researchers in special functions, mathematical physics, differential equations, mathematical Computing, number theory, and combinatorics.
L'auteur - George E. Andrews
is Evan Pugh Professor of Mathematics at the Pennsylvania State University. He is the author of many books in mathematics, including The Theory o/Partitions (Cambridge University Press). He is a member of the American Academy of Arts and Sciences. In 2003, he was elected to the National Academy of Sciences (USA).
Sommaire
- The Gamma and Beta functions
- The hypergeometric functions
- Hypergeometric transformations and identities
- Bessel functions and confluent hypergeometric functions
- Orthogonal polynomials
- Special orthogonal transformations
- Topics in orthogonal polynomials
- The Selberg integral and its applications
- Spherical harmonics
- Introduction to q-series
- Partitions
- Bailey chains
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Cambridge University Press |
Auteur(s) | George E. Andrews, Richard Askey, Ranjan Roy |
Collection | Encyclopedia of Mathematics and its Applications |
Parution | 27/09/2004 |
Nb. de pages | 663 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 933g |
Intérieur | Noir et Blanc |
EAN13 | 9780521789882 |
ISBN13 | 978-0-521-78988-2 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre linéaire
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des nombres
- Sciences Mathématiques Mathématiques par matières Analyse Analyse fonctionnelle
- Sciences Mathématiques Mathématiques par matières Analyse Cours
- Sciences Mathématiques Mathématiques par matières Analyse Exercices
- Sciences Mathématiques Mathématiques par matières Calcul différentiel et intégral
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour la physique
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Mathématiques Logiciels de calcul
- Sciences Physique