Ramanujan's Lost Notebook
Part I
George E. Andrews, Bruce C. Berndt
Résumé
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, Ramanujan's lost notebook. Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony.
The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work. Mathematicians are probably several decades away from a complete understanding of those functions. More than half of the material in the book is on q-series, including mock theta functions; the remaining part deals with theta function identities, modular equations, incomplete elliptic integrals of the first kind and other integrals of theta functions, Eisenstein series, particular values of theta functions, the Rogers-Ramanujan continued fraction, other q-continued fractions, other integrals, and parts of Hecke's theory of modular forms.
L'auteur - George E. Andrews
is Evan Pugh Professor of Mathematics at the Pennsylvania State University. He is the author of many books in mathematics, including The Theory o/Partitions (Cambridge University Press). He is a member of the American Academy of Arts and Sciences. In 2003, he was elected to the National Academy of Sciences (USA).
Sommaire
- Preface
- Introduction
- The Rogers-Ramanujan Continued Fraction and Its Modular Properties
- Explicit Evaluations of the Rogers-Ramanujan Continued Fraction
- A Fragment on the Rogers-Ramanujan and Cubic Continued Fractions
- The Rogers-Ramanujan Continued Fraction and Its Connections with Partitions and Lambert Series
- Finite Rogers-Ramanujan Continued Fractions
- Other q-continued Fractions
- Asymptotic Formulas for Continued Fractions
- Ramanujan's Continued Fraction for (q2; q3)8/(q; q3)8
- The Rogers-Fine Identity
- An Empirical Study of the Rogers-Ramanujan Identities
- Rogers-Ramanujan-Slater Type Identities
- Partial Fractions
- Hadamard Products for Two q-Series
- Integrals of Theta-functions
- Incomplete Elliptic Integrals
- Infinite Integrals of q-Products
- Modular Equations in Ramanujan's Lost Notebook
- Fragments on Lambert Series
- Location Guide
- Provenance
- References
- Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | George E. Andrews, Bruce C. Berndt |
Parution | 03/08/2005 |
Nb. de pages | 438 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 756g |
Intérieur | Noir et Blanc |
EAN13 | 9780387255293 |
ISBN13 | 978-0-387-25529-3 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Algorithmique et informatique appliquée
- Sciences Mathématiques Mathématiques par matières
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques
- Sciences Sciences et culture Histoire des sciences et personnalités scientifiques Personnalités scientifiques Mathématiciens