Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Model Selection and Multi-Model Inference
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Model Selection and Multi-Model Inference

Model Selection and Multi-Model Inference

A Practical Information-Theoretic Approach

Kenneth P. Burnham, David R. Anderson

484 pages, parution le 28/08/2002 (2eme édition)

Résumé

The second edition of this book is unique in that it focuses on methods for making formal statistical inference from all the models in an a priori set (Multi-Model Inference). A philosophy is presented for model-based data analysis and a general strategy outlined for the analysis of empirical data. The book invites increased attention on a priori science hypotheses and modeling.

Kullback-Leibler Information represents a fundamental quantity in science and is Hirotugu Akaike's basis for model selection. The maximized log-likelihood function can be bias-corrected as an estimator of expected, relative Kullback-Leibler information. This leads to Akaike's Information Criterion (AIC) and various extensions. These methods are relatively simple and easy to use in practice, but based on deep statistical theory. The information theoretic approaches provide a unified and rigorous theory, an extension of likelihood theory, an important application of information theory, and are objective and practical to employ across a very wide class of empirical problems.

The book presents several new ways to incorporate model selection uncertainty into parameter estimates and estimates of precision. An array of challenging examples is given to illustrate various technical issues. This is an applied book written primarily for biologists and statisticians wanting to make inferences from multiple models and is suitable as a graduate text or as a reference for professional analysts.

Sommaire

  • Preface
  • About the Authors
  • Glossary
  • Introduction
  • Information and Likelihood Theory: A Basis for Model Selection and Inference
  • Basic Use of the Information-Theoretic Approach
  • Formal Inference From More Than One Model: Multi-Model Inference (MMI)
  • Monte Carlo Insights and Extended Examples
  • Statistical Theory and Numerical Results
  • Summary
  • References
  • Index
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Kenneth P. Burnham, David R. Anderson
Parution 28/08/2002
Édition  2eme édition
Nb. de pages 484
Format 16 x 24
Couverture Broché
Poids 864g
Intérieur Noir et Blanc
EAN13 9780387953649
ISBN13 978-0-387-95364-9

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription