Linear Partial Differential Equations
For Scientists and Engineers
Résumé
One of the most fundamental and active areas in mathematics, the theory of partial differential equations (PDEs) is essential in the modeling of natural phenomena. PDEs have a wide range of interesting and important applications in every branch of applied mathematics, physics, and engineering, including fluid dynamics, elasticity, and optics.
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books, including conservation laws, the spherical wave equation, the cylindrical wave equation, higher-dimensional boundary-value problems, the finite element method, fractional partial differential equations, and nonlinear partial differential equations with applications.
Key features include:
- Applications to a wide variety of physical problems in numerous interdisciplinary areas
- Over 900 worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry
- Historical comments on partial differential equations
- Solutions and hints to selected exercises
- A comprehensive bibliography-comprised of many standard texts and reference books, as well as a set of selected classic and recent papers-for readers interested in learning more about the modern treatment of the subject
Linear Partial Differential Equations for Scientists and Engineers, Fourth Edition will primarily serve as a textbook for the first two courses in PDEs, or in a course on advanced engineering mathematics. The book may also be used as a reference for graduate students, researchers, and professionals in modern applied mathematics, mathematical physics, and engineering. Readers will gain a solid mathematical background in PDEs, sufficient to start interdisciplinary collaborative research in a variety of fields.
Written for: Graduate students, researchers, and professionals in modern applied mathematics, mathematical physics, and engineering
Sommaire
- Introduction
- First-Order, Quasi-Linear Equations and Method of Characteristics
- Mathematical Models
- Classification of Second-Order Linear Equations
- The Cauchy Problem and Wave Equations
- Fourier Series and Integrals with Applications
- Method of Separation of Variables
- Eigenvalue Problems and Special Functions
- Boundary-Value Problems and Applications
- Higher-Dimensional Boundary-Value Problems
- Green's Functions and Boundary-Value Problems
- Integral Transform Methods with Applications
- Nonlinear Partial Differential Equations with Applications
- Numerical and Approximation Methods
- Tables of Integral Transforms
- Answers and Hints to Selected Exercises
- Appendix: Some Special Functions and Their Properties
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Birkhäuser |
Auteur(s) | Tyn Myint-U, Lokenath Debnath |
Parution | 22/01/2007 |
Édition | 4eme édition |
Nb. de pages | 784 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 1195g |
Intérieur | Noir et Blanc |
EAN13 | 9780817643935 |
ISBN13 | 978-0-8176-4393-5 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse fonctionnelle
- Sciences Mathématiques Mathématiques par matières Analyse Cours
- Sciences Mathématiques Mathématiques par matières Analyse Exercices
- Sciences Mathématiques Mathématiques par matières Calcul différentiel et intégral
- Sciences Mathématiques Mathématiques appliquées