Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Graphical Models
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Graphical Models

Graphical Models

Methods for Data Analysis and Mining

Christian Borgelt, Rudolf Kruse

358 pages, parution le 15/02/2002

Résumé

The concept of modelling using graph theory has its origin in several scientific areas, notably statistics, physics, genetics, and engineering. The use of graphical models in applied statistics has increased considerably over recent years and the theory has been greatly developed and extended. This book provides a self-contained introduction to the learning of graphical models from data, and is the first to include detailed coverage of possibilistic networks - a relatively new reasoning tool that allows the user to infer results from problems with imprecise data. One major advantage of graphical modelling is that specialised techniques that have been developed in one field can be transferred into others easily. The methods described here are applied in a number of industries, including a recent quality testing programme at a major car manufacturer.
  • Provides a self-contained introduction to learning relational, probabilistic and possibilistic networks from data
  • Each concept is carefully explained and illustrated by examples
  • Contains all necessary background, including modeling under uncertainty, decomposition of distributions, and graphical representation of decompositions
  • Features applications of learning graphical models from data, and problems for further research
  • Includes a comprehensive bibliography
An essential reference for graduate students of graphical modelling, applied statistics, computer science and engineering, as well as researchers and practitioners who use graphical models in their work.

Contents

Preface

  1. Introduction
  2. Imprecision and Uncertainty
  3. Decomposition
  4. Graphical Representation
  5. Computing Projections
  6. Naive Classifiers
  7. Learning Global Structure
  8. Learning Local Structure
  9. Inductive Causation
  10. Applications

A. Proofs of Theorems
B. Software Tools

Bibliography
Index

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) Christian Borgelt, Rudolf Kruse
Parution 15/02/2002
Nb. de pages 358
Format 15,5 x 23,8
Couverture Broché
Poids 709g
Intérieur Noir et Blanc
EAN13 9780470843376
ISBN13 978-0-470-84337-6

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription