Elements of mathematics - Integration I
Chapters 1-6
Résumé
To the reader
The Elements of Mathematics series takes up mathematics at their beginning, and gives complete proofs. In principle, it requires no particular knowledge of mathematics on the reader's part, but only a certain familiarity with mathematical reasoning and a certain capacity for abstract thought. Nevertheless, it is directed especially to those who have a good knowledge of at least the content of the first year or two of a university mathematics course.
The method of exposition we have chosen is axiomatic, and normally proceeds from the general to the particular. The; demands of proof impose a rigorously fixed order on the subject matter. It follows that the utility of certain considerations will not be immediately apparent to the reader unless lie already has a fairly extensive knowledge of mathematics.
The series is divided into Books, and each Book into chapters. The Books already published, either in whole or in part, in the French edition, are listed below. When an English translation is available, the corresponding English title is mentioned between parentheses. Throughout the volume a reference indicates the English edition, when available, and the French edition otherwise.
Contents
- Introduction
- Inequalities Of Convexity
- The fundamental inequality of convexity
- The inequalities of Holder and Minkowski
- The semi-norms Np
- Riesz Spaces
- Riesz spaces and fully lattice-ordered spaces
- Linear forms on a Riesz space
- Measures on locally compact spaces
- Measures on a locally compact space
- Support of a measure
- Integrals of continuous vector-valued functions
- Products of measures
- Extension of a measure. Lp spaces
- Upper integral of a positive function
- Negligible functions and sets
- Lp spaces
- Integrable functions and sets
- Measurable functions and sets
- Convexity inequalities
- Barycenters
- Integration of measures
- Essential upper integral
- Summable families of positive measures
- Integration of positive measures
- Integration of positive point measures
- Measures defined by numerical densities
- Images of a measure
- Integration with respect to an induced measure
- Products of measures
- Vectorial integration
- Integration of vector-valued functions
- Vectorial measures
- Disintegration of measures
L'auteur - Pierre Samuel
Pierre Samuel, spécialiste d'algèbre et de géométrie algébrique, est professeur à l'Université de Paris-Sud (Orsay).
Autres livres de Pierre Samuel
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Pierre Samuel |
Parution | 28/11/2003 |
Nb. de pages | 472 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 835g |
Intérieur | Noir et Blanc |
EAN13 | 9783540411291 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse