Commutative Algebra with a View Toward Algebraic Geometry
David Eisenbud - Collection Graduate Texts in Mathematics
Résumé
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.
Sommaire
- Introduction
- Elementary Definitions
- Basic Constructions
- Roots and Commutative Algebra
- Localization
- Associated Primes and Primary Decomposition
- Integral Dependence and the Nullstellensatz
- Filtrations and the Artin-Rees Lemma
- Flat Families
- Completions and Hensel's Lemma
- Dimension Theory
- Introduction to Dimension Theory
- Fundamental Definitions of Dimension Theory
- The Principal Ideal Theorem and Systems of Parameters
- Dimension and Codimension One
- Dimension and Hilbert- Samuel Polynomials
- Dimension of Affine Rings
- Elimination Theory, Generic Freeness and the Dimension of Fibers
- Grobner Bases
- Modules of Differentials
- Homological Methods
- Regular Sequence and the Koszul Complex
- Depth, Codimension and Cohen-Macaulay Rings
- Homological Theory of Regular Local Rings
- Free Resolutions and Fitting Invariants
- Duality, Canonical Modules and Gorenstein Rings
- Appendix 1: Field Theory
- Appendix 2: Multilinear Algebra
- Appendix 3: Homological Algebra
- Appendix 4: A Sketch of Local Cohomology
- Appendix 5: Category Theory
- Appendix 6: Limits and Colimits
- Appendix 7: Where Next?
- Hints and Solutions for Selected Exercises
- References
- Index of Notations
- Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | David Eisenbud |
Collection | Graduate Texts in Mathematics |
Parution | 18/01/1999 |
Édition | 3eme édition |
Nb. de pages | 797 |
Couverture | Broché |
Intérieur | Noir et Blanc |
EAN13 | 9780387942698 |
ISBN13 | 978-0-387-94269-8 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie algébrique
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques