Combinatorial Commutative Algebra
Ezra Miller, Bernd Sturmfels - Collection Graduate Texts in Mathematics
Résumé
Combinatorial commutative algebra is an active area of research with thriving connections to other fields of pure and applied mathematics. This book provides a self-contained introduction to the subject, with an emphasis on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determinantal rings. The eighteen chapters cover a broad spectrum of topics, ranging from homological invariants of monomial ideals and their polyhedral resolutions, to hands-on tools for studying algebraic varieties with group actions, such as toric varieties, flag varieties, quiver loci, and Hilbert schemes. Over 100 figures, 250 exercises, and pointers to the literature make this book appealing to both graduate students and researchers.
Written for: Graduate students, mathematicians
L'auteur - Ezra Miller
Ezra Miller received his doctorate in 2000 from DC Berkeley. After two years at MIT in Cambridge and one year at MSRI in Berkeley, he is currently Assistant Professor at the University of Minnesota, Twin Cities. Miller was awarded an Alfred P. Sloan Dissertation Fellowship in 1999 and an NSF Postdoctoral Fellowship in 2000. Besides his mathematical interests, which include combinatorics, algebraic geometry, homological algebra, and polyhedral geometry, Miller is fond of music theory and composition, molecular biology, and ultimate frisbee.
L'auteur - Bernd Sturmfels
Bernd Sturmfels received doctoral degrees in 1987 from the University of Washington, Seattle and TU Darmstadt, Germany. After two postdoc years at the IMA in Minneapolis and RISC-Linz in Austria, he taught at Cornell University before joining UC Berkeley in 1995, where he is now Professor of Mathematics and Computer Science. A leading experimentalist among mathematicians, Sturmfels has authored seven books and over 130 research articles in the areas of combinatorics, algebraic geometry, symbolic computation, and their applications, and he has mentored 16 doctoral students.
Sommaire
- Monomial ideals
- Squarefree monomial ideals
- Borel-fixed monomial ideals
- Three-dimensional staircases
- Cellular resolutions
- Alexander duality
- Generic monomial ideals
- Toric algebra
- Semigroup rings
- Multigraded polynomial rings
- Syzgies of lattice ideals
- Toric varieties
- Irreducible and injective resolutions
- Ehrhart polynomials
- Local cohomology
- Determinants
- Plucker coordinates
- Matrix Schubert varieties
- Antidiagonal initial ideals
- Minors in matrix products
- Hilbert schemes of points
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Ezra Miller, Bernd Sturmfels |
Collection | Graduate Texts in Mathematics |
Parution | 27/07/2005 |
Nb. de pages | 435 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 620g |
Intérieur | Noir et Blanc |
EAN13 | 9780387237077 |
ISBN13 | 978-0-387-23707-7 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques