Calcul différentiel et intégral
Résumé
Ce cours s'adresse à des lecteurs ayant les connaissances d'un premier cycle en mathématiques. Il se situe au niveau de la licence et traite d'un certain nombre de questions de base, choisies pour être une introduction à la théorie des systèmes dynamiques.
Le texte commence par un chapitre sur les équations différentielles (non linéaires) où l'existence et l'unicité des solutions maximales sont établies et où leur durée de vie est discutée. Dans le cas d'une équation différentielle indépendante du temps, l'ensemble de toutes les solutions s'organise en un flot dont les propriétés sont remarquables. Puis vient le calcul différentiel proprement dit avec le théorème des fonctions implicites et ses premières applications géométriques (sous-variétés). Avec ces outils on peut reprendre l'étude des équations différentielles et aborder des questions capitales telles que la stabilité des équilibres.
Dans le calcul intégral on expose la théorie de la mesure, telle qu'elle peut servir en probabilité, puis l'intégrale de Lebesgue sur un espace mesuré avec le fameux théorème de convergence dominée et certaines de ses applications. Le dernier chapitre "intégrales multiples" mélange le calcul différentiel et le calcul intégral. Le théorème de Fubini est exposé dans le cadre des espaces mesurés. L'intégrale de Lebesgue sur Rn admet une formule pour les changements de variable continûment différentiables qui explique comment le flot d'un champ de vecteurs transporte la mesure de Lebesgue. La formule de Stokes calcule les intégrables de flux. Le cours se conclut sur le principe de récurrence de Poincaré en mécanique conservatrice.
L'auteur - François Laudenbach
François Laudenbach est professeur des universités. Il a enseigné successivement à l'université Paris-Sud, à l'École normale supérieure de Lyon et à l'École polytechnique. Il est actuellement professeur émérite de l'université de Nantes.
Sommaire
- Equations différentielles : point de vue élémentaire.
- Applications différentiables.
- Sous-variétés.
- Equations différentielles : différentiabilité.
- Mesures.
- Intégration.
- Intégrales multiples
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Ellipses |
Auteur(s) | François Laudenbach |
Parution | 13/07/2001 |
Édition | 2eme édition |
Nb. de pages | 220 |
Format | 17 x 24 |
Couverture | Broché |
Poids | 369g |
Intérieur | Noir et Blanc |
EAN13 | 9782730207249 |
ISBN13 | 978-2-7302-0724-9 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse