Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Blow-up Theory for Elliptic PDEs in Riemannian Geometry
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Blow-up Theory for Elliptic PDEs in Riemannian Geometry

Blow-up Theory for Elliptic PDEs in Riemannian Geometry

Olivier Druet, Emmanuel Hebey, Frédéric Robert

218 pages, parution le 17/06/2004

Résumé

Elliptic equations of critical Sobolev growth have been the target of investigation for decades because they have proved to be of great importance in analysis, geometry, and physics. The equations studied here are of the well-known Yamabe type. They involve Schrödinger operators on the left hand side and a critical nonlinearity on the right hand side.

A significant development in the study of such equations occurred in the 1980s. It was discovered that the sequence splits into a solution of the limit equation--a finite sum of bubbles--and a rest that converges strongly to zero in the Sobolev space consisting of square integrable functions whose gradient is also square integrable. This splitting is known as the integral theory for blow-up. In this book, the authors develop the pointwise theory for blow-up. They introduce new ideas and methods that lead to sharp pointwise estimates. These estimates have important applications when dealing with sharp constant problems (a case where the energy is minimal) and compactness results (a case where the energy is arbitrarily large). The authors carefully and thoroughly describe pointwise behavior when the energy is arbitrary. Intended to be as self-contained as possible, this accessible book will interest graduate students and researchers in a range of mathematical fields.

L'auteur - Olivier Druet

Olivier Druet is Researcher at CNRS, Ecole Normale Supérieure de Lyon

L'auteur - Emmanuel Hebey

Emmanuel Hebey is Professor at Université de Cergy-Pontoise.

L'auteur - Frédéric Robert

Frédéric Robert is Associate Professor at Université de Nice Sophia-Antipolis

Sommaire

  • Background Material
  • The Model Equations
  • Blow-up Theory in Sobolev Spaces
  • Exhaustion and Weak Pointwise Estimates
  • Asymptotics When the Energy Is of Minimal Type
  • Asymptotics When the Energy Is Arbitrary
  • Appendix A. The Green's Function on Compact Manifolds
  • Appendix B. Coercivity Is a Necessary Condition
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Princeton University Press
Auteur(s) Olivier Druet, Emmanuel Hebey, Frédéric Robert
Parution 17/06/2004
Nb. de pages 218
Format 15,5 x 23,5
Couverture Broché
Poids 325g
Intérieur Noir et Blanc
EAN13 9780691119533
ISBN13 978-0-691-11953-3

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription