Algèbre et géométries
Arrangements d'hyperplans. découpages en dimensions 2 et 3. Invariants conformes. Quadrangles harmoniques. Courbes elliptiques.
Pascal Boyer - Collection Tableau noir
Résumé
Dans l'histoire de l'humanité, la géométrie a toujours irrigué les sciences et les arts : astronomie, cartographie, architecture, peinture... participant ainsi de l'indéfectible quête de la vérité et de la beauté. L'homme de goût, l'"honnête homme" se doit d'en étudier les fondements, d'en explorer les arcanes. L'auteur du présent ouvrage nous propose, dans cet esprit, de redécouvrir quelques-uns des plus beaux énoncés de géométrie, de l'école grecque à nos jours, en passant par la Renaissance et le XIXe siècle.
Pascal Boyer s'appuie délibérément sur l'algèbre linéaire telle qu'elle est enseignée dans les premières années après le baccalauréat. Il présente ensuite les différentes géométries en faisant appel aux groupes et à leurs invariants, selon le point de vue adopté par Félix Klein dans son célèbre "Programme d'Erlangen". Sont ainsi traités la géométrie affine avec le calcul barycentrique, les classiques de la géométrie euclidienne, les géométries inversive et sphérique avec leurs applications cartographiques, la géométrie projective et ses points à l'infini, quelques énoncés inattendus de géométrie hyperbolique et, pour finir, de géométrie algébrique contemporaine.
Ce voyage depuis les origines permettra aux lecteurs de se frotter aux classiques théorèmes de Ménélaüs, Céva, Pappus, Desargues, Pascal, Poncelet, à d'autres moins communs, tels les théorèmes de Bolyai, Dehn-Hadwiger et Tarski sur les découpages en dimension 2 et 3, les zigzags entre deux cercles/droites, le théorème de Clifford appliqué à celui de Jiang Zemin, aux problèmes de navigation et triangulation, à la géométrie projective sur F5 et à ses liens avec la configuration de Desargues, aux quadrilatères articulés, etc.
Les étudiants motivés, les enseignants, les candidats au CAPES et à l'agrégation et d'une façon générale tous les amoureux de la géométrie trouveront dans cette somme une mine exceptionnelle de résultats et de problèmes, qui montre que cette discipline est loin d'avoir livré tous ses secrets, des plus sensationnels aux plus piquants.
Plus de trois cents figures agrémentent les énoncés et font de ce livre un bel objet et une invitation à la joie.
L'avis du libraire Eyrolles
De belles figures en couleurs agrémentent les énoncés pour apprendre avec joie algèbre et géométrie !
L'auteur - Pascal Boyer
Pascal Boyer est professeur à l'université Paris-XIII, à Villetaneuse.
Autres livres de Pascal Boyer
Sommaire
- Géométrie affine
- Espaces affines réels
- Géométrie affine euclidienne
- Les classiques de la géométrie euclidienne
- Géométrie inversive et sphérique
- Géométrie projective
- Géométrie hyperbolique
- Une brève introduction à la géométrie algébrique
- A. Indications de solutions
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Calvage et Mounet |
Auteur(s) | Pascal Boyer |
Collection | Tableau noir |
Parution | 13/05/2015 |
Nb. de pages | 726 |
Format | 17 x 24 |
Couverture | Relié |
Poids | 1266g |
EAN13 | 9782916352305 |
ISBN13 | 978-2-91-635230-5 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Géométrie
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques
- Sciences Etudes et concours CAPES, CAPLP, et agrégation Mathématiques