Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Foundations of Machine Learning
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Disponible en magasin

Foundations of Machine Learning

Foundations of Machine Learning

Mehryar Mohri, Afshin Rostamizadeh, Ameet T alwalkar

504 pages, parution le 25/12/2018 (2eme édition)

Résumé

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms.A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.Mehryar Mohri is Professor of Computer Science at New York University's Courant Institute of Mathematical Sciences and a Research Consultant at Google Research. Afshin Rostamizadeh is a Research Scientist at Google Research. meet Talwalkar is Assistant Professor in the Machine Learning Department at Carnegie Mellon University.

L'auteur - Mehryar Mohri

Mehryar Mohri is Professor of Computer Science at New York University's Courant Institute of Mathematical Sciences and a Research Consultant at Google Research.

L'auteur - Afshin Rostamizadeh

Afshin Rostamizadeh is a Research Scientist at Google Research.

L'auteur - Ameet T alwalkar

Ameet Talwalkar is Assistant Professor in the Machine Learning Department at Carnegie Mellon University.

Caractéristiques techniques

  PAPIER
Éditeur(s) The MIT Press
Auteur(s) Mehryar Mohri, Afshin Rostamizadeh, Ameet T alwalkar
Parution 25/12/2018
Édition  2eme édition
Nb. de pages 504
Couverture Broché
Intérieur Noir et Blanc
EAN13 9780262039406

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription