Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Random dynamical systems
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Random dynamical systems

Random dynamical systems

Ludwig Arnold

586 pages, parution le 01/01/1998

Résumé

This book is the first systematic presentation of the theory of dynamical systems under the influence of randomness. It includes products of random mappings as well as random and stochastic differential equations. The basic mulitplicative ergodic theorem is presented and provides a random substitute for linear algebra. On its basis random invariant manifolds are constructed, systems are simplified by smooth random coordinate transformations (random normal forms), and qualitative changes in families of random systems (random bifurcation theory) are studied. Numerous instructive examples are treated analytically or numerically. The main intention, however, is to present a reliable and rather complete source of reference which lays the foundation for future work and applications.

Table of Contents

Part I. Random Dynamical Systems and Their Generators
Chapter 1. Basic Definitions. Invariant
Measures
1.1 Definition of a Random Dynamical System
1.2 Local RDS
1.3 Perfection of a Crude Cocycle
1.4 Invariant Measures for Measurable RDS
1.5 Invariant Measures for Continuous RDS
1.5.1 Polish State Space
1.5.2 Compact Metric State Space
1.6 Invariant Measures on Random Sets
1.7 Markov Measures
1.8 Invariant Measures for Local RDS
1.9 RDS on Bundles. Isomorphisms
1.9.1 Bundle RDS
1.9.2 Isomorphisms of RDS
Chapter 2. Generation
2.1 Discrete Time: Products of Random
Mappings
2.1.1 One-Sided Discrete Time
2.1.2 Two-Sided Discrete Time
2.1.3 RDS with Independent Increments
2.2 Continuous Time 1: Random
Differential Eqs.
2.2.1 RDS from Random Differential Equations
2.2.2 The Memoryless Case
2.2.3 Random Differential Equations from RDS
2.2.4 The Manifold Case
2.3 Continuous Time 2: Stochastic
Differential Eqs.
2.3.1 Introduction. Two Cultures
2.3.2 Semimartingales and Dynamical
Systems: Stochastic Calculus for Two-Sided Time
2.3.3 Semimartingale Helices with Spatial Parameter
2.3.4 RDS from Stochastic Differential Equations
2.3.5 Stochastic Differential Equations from RDS
2.3.6 White Noise
2.3.7 An Example
2.3.8 The Manifold Case
2.3.9 RDS with Independent Increments
Part II. Multiplicative Ergodic Theory
Chapter 3. The Multiplicative Ergodic
Theorem in Euclidean Space
3.1 Introduction
3.2 Lyapunov Exponents
3.2.1 Deterministic Theory of Lyapunov Exponents
3.2.2 Singular Values
3.2.3 Exterior Powers
3.3 Furstenberg-Kesten Theorem
3.3.1 The Subadditive Ergodic Theorem
3.3.2 The Furstenberg-Kesten Theorem for One-Sided Time
3.3.3 The Furstenberg-Kesten Theorem for Two-Sided Time
3.4 Multiplicative Ergodic Theorem
3.4.1 The MET for One-Sided Time
3.4.2 The MET for Two-Sided Time
3.4.3 Examples
Chapter 4. The Multiplicative Ergodic
Theorem on Bundles and Manifolds
4.1 Temperedness. Lyapunov Cohomology
4.1.1 Tempered Random Variables
4.1.2 Lyapunov Cohomology
4.2 The MET on Manifolds
4.2.1 Linearization of a C(1) RDS
4.2.2 The MET for RDS on Manifolds
4.2.3 Random Differential Equations
4.2.4 Stochastic Differential Equations
4.3 Random Lyapunov Metrics and Norms
4.3.1 The Control of Non-Uniformity in
the MET
4.3.2 Random Scalar Products
4.3.3 Random Riemannian Metrics on
Manifolds
Chapter 5. The MET for Related Linear and Affine RDS
5.1 Inverse and Adjoint
5.2 The MET on Linear Subbundles
5.3 Exterior Powers, Volume, Angle
5.3.1 Exterior Powers
5.3.2 Volume and Determinant
5.3.3 Angles
5.4 Tensor Product
5.5 Manifold Versions
5.6 Affine RDS
5.6.1 Representation
5.6.2 Invariant Measure in the
Hyperbolic Case
5.6.3 Time Reversibility and Iterated Function Systems
Chapter 6. RDS on Homogeneous Spaces of the
General Linear Group
6.1 Cocycles on Lie Groups
6.1.1 Group-Valued Cocycles and Their Generators
6.1.2 Cocycles Induced by Actions
6.2 RDS Induced on S(d-1) and P(d-1)
6.2.1 Invariant Measures
6.2.2 Furstenberg-Khasminskii Formulas
6.2.3 Spectrum and Splitting
6.3 RDS on Grassmannians
6.3.1 Invariant Measures
6.3.2 Furstenberg-Khasminskii Formulas
6.4 Manifold Versions
6.4.1 Sphere Bundle and Projective Bundle
6.4.2 Grassmannian Bundles
6.5 Rotation Numbers
6.5.1 The Concept of Rotation Number of a Plane
6.5.2 Rotation Numbers for RDE
6.5.3 Rotation Numbers for SDE
Part III. Smooth Random Dynamical Systems
Chapter 7. Invariant Manifolds
7.1 The Problem of Invariant Manifolds
7.2 Reductions and Preparations
7.2.1 Reductions
7.2.2 Preparations
7.3 Global Invariant Manifolds
7.3.1 Construction of Unstable Manifolds
7.3.2 Construction of Stable Manifolds
7.3.3 Construction of Center Manifolds
7.3.4 The Continuous Time Case
7.3.5 Higher Regularity
7.3.6 Final Global Invariant Manifold Theorem
7.4 Hartman-Grobman Theorem
7.4.1 Invariant Foliations
7.4.2 Topological Decoupling
7.4.3 Hartman-Grobman Theorem
7.5 Local Invariant Manifolds
7.5.1 Local Manifolds for Discrete Time
7.5.2 Dynamical Characterization and Globalization
7.5.3 Local Manifolds for Continuous Time
7.6 Examples
Chapter 8. Normal Forms
8.1 Deterministic Prerequisites
8.2 Normal Forms for Random Diffeomorphisms
8.2.1 The Random Cohomological Equation
8.2.2 Nonresonant Case
8.2.3 Resonant Case
8.3 Normal Forms for RDE
8.3.1 The Random Cohomological Equation
8.3.2 Nonresonant Case
8.3.3 Resonant Case
8.3.4 Examples
8.4 Normal Form and Center Manifold
8.4.1 The Reduction Procedure
8.4.2 Parametrized RDE
8.4.3 Small Noise: A Case Study
8.5 Normal Forms for SDE
8.5.1 The Random Cohomological Equation
8.5.2 Nonresonant Case
8.5.3 Small Noise Case
Chapter 9. Bifurcation Theory
9.1 Introduction
9.2 What is Stochastic Bifurcation?
9.2.1 Definition of a Stochastic Bifurcation Point
9.2.2 The Phenomenological Approach
9.3 Dimension One
9.3.1 Transcritical Bifurcation
9.3.2 Pitchfork Bifurcation
9.3.3 Saddle-Node Case
9.3.4 A General Criterion for Pitchfork Bifurcation
9.3.5 Real Noise Case
9.3.6 Discrete Time
9.4 The Noisy Duffing-van der Pol Oscillator
9.4.1 Introduction, Completeness,
Linearization
9.4.2 Hopf Bifurcation
9.4.3 Pitchfork Bifurcation
9.5 General Dimension. Further Studies
9.5.1 Baxendale's Sufficient Conditions
for D-Bifurcation and Associated P-Bifurcation
9.5.2 Further Studies
Part IV. Appendices
Appendix A. Measurable Dynamical Systems
A.1 Ergodic Theory
A.2 Stochastic Processes and Dynamical Systems
A.3 Stationary Processes
A.4 Markov Processes
Appendix B. Smooth Dynamical Systems
B.1 Two-Parameter Flows on a Manifold
B.2 Spaces of Functions in R(d)
B.3 Differential Equations in R(d)
B.4 Autonomous Case: Dynamical Systems
B.5 Vector Fields and Flows on Manifolds
References
Index

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Ludwig Arnold
Parution 01/01/1998
Nb. de pages 586
Format 16 x 24
Couverture Relié
Poids 1000g
Intérieur Noir et Blanc
EAN13 9783540637585

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription