Radon Transforms and the Rigidity of the Grassmannians
Jacques Gasqui, Hubert Goldschmidt - Collection Annals of Mathematic Studies
Résumé
This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank >1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces.
A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.
L'auteur - Jacques Gasqui
Jacques Gasqui, professeur honoraire des universités, nous donne ici son deuxième ouvrage (Le général Regard de la Grande guerre à la Résistance) sur les grandes figures des troupes de montagne originaires de l'Isère.
Autres livres de Jacques Gasqui
L'auteur - Hubert Goldschmidt
Hubert Goldschmidt is Visiting Professor of Mathematics at Columbia University and Professeur des Universités in France.
Sommaire
- Symmetric spaces and Einstein Manifolds
- Radon transforms on symmetric spaces
- Symmetric spaces of rank one
- The real Grassmannians
- The complex quadric
- The rigidity of the complex quadric
- The rigidity of the real Grassmannians
- The complex Grassmannians
- The rigidity of the complex Grassmannians
- Products of symmetric spaces
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Princeton University Press |
Auteur(s) | Jacques Gasqui, Hubert Goldschmidt |
Collection | Annals of Mathematic Studies |
Parution | 30/03/2004 |
Nb. de pages | 366 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 535g |
Intérieur | Noir et Blanc |
EAN13 | 9780691118994 |
ISBN13 | 978-0-691-11899-4 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Calcul différentiel et intégral
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie différentielle
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques