Résumé
- Includes an introduction by Claude Berge, the founder of perfect graph theory
- Discusses the most recent developments in the field of perfect graph theory
- Provides a thorough historical overview of the subject
- Internationally respected authors highlight the new directions, seminal results and the links the field has with other subjects
- Discusses how semi-definite programming evolved out of perfect graph theory The early developments of the theory are included to lay the groundwork for the later chapters.
Contents
- List of Contributors.
- Preface.
- Acknowledgements.
- Origins and Genesis (C. Berge and J.L. Ramirez Alfonsin).
- Perfection.
- Communication Theory.
- The Perfect Graph Conjecture.
- Shannon's Capacity.
- Translation of the Halle-Wittenberg Proceedings.
- Indian Report.
- References.
- From Conjecture to Theorem (Bruce A Reed).
- Gallai's Graphs.
- The Perfect Graph Theorem.
- Some Polyhedral Consequences.
- A Stronger Theorem.
- References.
- A Translation of Gallai's Paper: "Transitiv Orientierbare Graphen" (Frederic Maffray and Myriam Preissmann).
- Translators' Foreword.
- References.
- Even Pairs (Hazel Everett et al).
- Introduction.
- Even Pairs and Perfect Graphs.
- Perfectly Contractile Graphs.
- Quasi-parity Graphs.
- Recent Progress.
- Odd Pairs.
- References.
- The P4-Structure of Perfect Graphs (Stefan Hougardy).
- Introduction.
- P4-Stucture: Basics, Isomorphisms and Recognition.
- Modules, h-Sets, Split Graphs and Unique P4-Structure.
- The Semi-Strong perfect Graph Theorem.
- The Structure of the P4-Isomorphism Classes.
- Recognizing P4-Structure.
- The P4-Structure of Minimally Imperfect Graphs.
- The Partner Structure and Other Generalizations.
- P3-Structure.
- References.
- Forbidding Holes and Antiholes (Ryan Hayward and Bruce A. Reed).
- Introduction.
- Graphs with No Holes.
- Graphs with No Discs.
- Graphs with No Long Holes.
- Balanced Matrices.
- Bipartitie Graphs with No Hole of Length 4k + 2.
- Graphs without Even Holes.
- &b.beta; -Perfect Graphs.
- Graphs without Odd Holes.
- References.
- Perfectly Orderable Graphs: A Survey (Chinh T Hoang).
- Introduction.
- Classical Graphs.
- MinimalNonperfectly Orderable Graphs.
- Orientations.
- Generalizations of Triangulated Graphs.
- Generalizations of Complements of Chordal Bipartitie Graphs.
- Other Classes of Perfectly Orderable Graphs.
- Vertex Orderings.
- Generalizations of Perfectly Orderable Graphs.
- Optimizing Perfectly Ordered Graphs.
- References.
- Cutsets in Perfect and Minimal Imperfect Graphs (Irena Rusu).
- Introduction.
- How Did It Start?
- Main Results on Minimal Imperfect Graphs.
- Applications: Star Cutsets.
- Applications: Clique and Multipartite Cutsets.
- Applications: Stable Cutsets.
- Two (Resolved) Conjectures.
- The Connectivity of Minimal Imperfect Graphs.
- Some (More) Problems.
- References.
- Some Aspects of Minimal Imperfect Graphs (Myriam Preissmann and Andras Sebo).
- Introduction.
- Imperfect and Partitionable Graphs.
- Properties.
- Constructions.
- References.
- Graph Imperfection and Channel Assignment (Colin McDiarmid).
- Introduction.
- The Imperfection Ratio.
- An Alternative Definition.
- Further Results and Questions.
- background on Channel Assignment.
- References.
- A Gentle Introduction to Semi-definite Programming (Bruce A. Reed).
- Introduction.
- The Ellipsoid Method.
- Solving Semi-definite Programs.
- Randomized Rounding and Derandomization.
- Approximating MAXCUT.
- Approximating Bandwidth.
- Graph Colouring.
- The Theta Body.
- References.
- The Theta Body and Imperfection (F.B. Shepherd).
- Background and Overview.
- Optimization, Convexity and Geometry.
- The Theta Body.
- Partitionable Graphs.
- Perfect Graph Characterizations and a Continuous Perfect Graph Conjecture.
- References.
- Perfect Graphs and Graph Entropy (Gabor Simonyi).
- Introduction.
- The Information-Theoretic Interpretation.
- Some Basic Properties.
- Structural Theorems: Relation to Perfectness.
- Applications.
- Generalizations.
- Graph Capacities and Other Related Functionals.
- References.
- A Bibliography on Perfect Graphs (Vasek Chvatal).
- Index.
L'auteur - Jorge L. Ramirez Alfonsin
Jorge L. Ramírez Alfonsín, Maître de Conférences, Université Pierre et Marie Curie, Paris 6.
Autres livres de Jorge L. Ramirez Alfonsin
L'auteur - Bruce A. Reed
CNRS, Paris, France
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Wiley |
Auteur(s) | Jorge L. Ramirez Alfonsin, Bruce A. Reed |
Parution | 01/09/2001 |
Nb. de pages | 362 |
Format | 17 x 25 |
Couverture | Relié |
Poids | 871g |
Intérieur | Noir et Blanc |
EAN13 | 9780471489702 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse