Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources
François Bouchut - Collection Frontiers in Mathematics
Résumé
This book is devoted to finite volume methods for hyperbolic systems of conservation laws. It differs from previous expositions on the subject in that the accent is put on the development of tools and the design of schemes for which one can rigorously prove nonlinear stability properties. Sufficient conditions for a scheme to preserve an invariant domain or to satisfy discrete entropy inequalities are systematically exposed, with analysis of suitable CFL conditions.The monograph intends to be a useful guide for the engineer or researcher who needs very practical advice on how to get such desired stabilityproperties. The notion of approximate Riemann solver and the relaxation method, which are adapted to this aim, are especially explained. In particular, practical formulas are provided in a new variant of the HLLC solver for the gas dynamics system, taking care of contact discontinuities, entropy conditions, and including vacuum. In the second half of the book, nonconservative schemes handling source terms are analyzed in the same spirit. The recent developments on well-balanced schemes that are able to capture steady states are explained within a general framework that includes analysis of consistency and order of accuracy. Several schemes are compared for the Saint Venant problem concerning positivity and the ability to treat resonant data. In particular, the powerful and recently developed hydrostatic reconstruction method is detailed.
Sommaire
- Quasilinear systems and conservation laws
- Conservative schemes
- Source terms
- Nonconservative schemes
- Multidimensional finite volumes with sources
- Numerical test with source
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Birkhäuser |
Auteur(s) | François Bouchut |
Collection | Frontiers in Mathematics |
Parution | 12/07/2004 |
Nb. de pages | 134 |
Format | 17 x 24 |
Couverture | Broché |
Poids | 410g |
Intérieur | Noir et Blanc |
EAN13 | 9783764366650 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Physique Physique fondamentale Etats de la matière
- Sciences Physique Mécanique Mécanique des fluides
- Sciences Physique Mécanique Mécanique des vibrations
- Sciences Physique Mécanique Méthodes numériques
- Sciences Physique Echanges thermiques Thermodynamique