Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
La Planète R
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

La Planète R

La Planète R

Voyage au pays des nombres réels

Robert Brouzet, Hassan Boualem

248 pages, parution le 12/07/2002

Résumé

Cet ouvrage explore la "planète" R, ensemble des nombres réels, en décrivant de façon élémentaire et imagée ses habitants et leurs propriétés. De nombreux exemples remarquables du point de vue arithmétique ou topologique sont présentés. Les thèmes sont abordés comme s'il s'agissait d'histoires courtes, indépendantes les unes des autres. Un index détaillé permet de naviguer d'un sujet à l'autre. Les démonstrations, classiques ou originales, sont élégantes sans être trop approfondies, compte tenu du public visé. Elles sont parfois illustrées par des exercices dont les corrrections sont données en fin d'ouvrage.

Au sommaire

  • Aspect arithmétique :
    • la découverte de Pythagore,
    • Euler et l'irrationalité de e,
    • le théorème de Lambert,
    • le théorème d'Hermite,
    • le théorème de Lindemann,
    • Euler et la fonction de Riemann,
    • théorèmes et nombres de Liouville,
    • les nombres constructibles,
    • transcendance des puissances de e.
  • Constructions, architecture et représentations :
    • représentation des réels,
    • les coupures de Dedekind,
    • les suites de Cauchy,
    • unicité de R,
    • topologie de l'ensemble des réels,
    • cardinal de l'ensemble des réels,
    • représentation des réels : écriture dans une base,
    • les fractions continues.
  • Quelques sous-ensembles remarquables de R :
    • les parties connexes et la propriété de la valeur intermédiaire,
    • le théorème de Cantor sur l'ordre des rationnels,
    • les parfaits de R et le théorème de Cantor-Bendixon,
    • les sous-groupes additifs de R,
    • de Jordan à Lebesgue : longueur d'une partie de R,
    • l'ensemble de Cantor,
    • espaces compacts et ensemble de Cantor,
    • caractérisation des segments,
    • parties de R de première et de seconde catégories de Baire.
  • Quelques bases utiles :
    • rudiments de théorie des ensembles et de topologie générale,
    • vocabulaire de l'algèbre générale.

L'auteur - Robert Brouzet

Robert Brouzet est maître de conférences au Centre universitaire de formation et de recherche de Nîmes. Ses recherches concernent la géométrie différentielle.

L'auteur - Hassan Boualem

Hassan Boualem est maître de conférences à l'université Montpellier-ll. Son domaine de recherche est la géométrie différentielle.

Caractéristiques techniques

  PAPIER
Éditeur(s) Dunod
Auteur(s) Robert Brouzet, Hassan Boualem
Parution 12/07/2002
Nb. de pages 248
Format 17 x 24
Couverture Broché
Poids 440g
Intérieur Noir et Blanc
EAN13 9782100059409
ISBN13 978-2-10-005940-9

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription