Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Introduction to Lie Algebras
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Résumé

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right.

Based on a lecture course given to fourth-year undergraduates, this book provides an elementary introduction to Lie algebras. It starts with basic concepts. A section on low-dimensional Lie algebras provides readers with experience of some useful examples. This is followed by a discussion of solvable Lie algebras and a strategy towards a classification of finite-dimensional complex Lie algebras. The next chapters cover Engel's theorem, Lie's theorem and Cartan's criteria and introduce some representation theory. The root-space decomposition of a semisimple Lie algebra is discussed, and the classical Lie algebras studied in detail. The authors also classify root systems, and give an outline of Serre's construction of complex semisimple Lie algebras. An overview of further directions then concludes the book and shows the high degree to which Lie algebras influence present-day mathematics.

The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions.

Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

Sommaire

  • Preface
  • Introduction
  • Ideals and Homomorphisms
  • Low-Dimensional Lie Algebras
  • Solvable Lie Algebras and a Rough Classification
  • Subalgebras of gl(V)
  • Engel(s Theorem and Lie's Theorem
  • Some Representation Theory
  • Representations of sl(2, C)
  • Cartan's Criteria
  • The Root Space Decomposition
  • Root Systems
  • The Classical Lie Algebras
  • The Classification of Root Systems
  • Simple Lie Algebras
  • Further Directions
  • Appendix A: Linear Algebra
  • Appendix B: Weyl's Theorem
  • Appendix C: Cartan Subalgebras
  • Appendix D: Weyl Groups
  • Appendix E: Answers to Selected Exercices
  • Bibliography
  • Index
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Karin Erdmann, Mark J. Wildon
Collection Springer Undergraduate Mathematics Series (SUMS)
Parution 28/02/2006
Nb. de pages 252
Format 18 x 23,5
Couverture Broché
Poids 431g
Intérieur Noir et Blanc
EAN13 9781846280405
ISBN13 978-1-84628-040-5

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription