Introduction to Algebraic Topology
Holger Kammeyer - Collection Yellow Sale 2024
Résumé
It begins with an outline of category theory, establishing the concepts of functors, natural transformations, adjunction, limits, and colimits. As a first application, van Kampen's theorem is proven in the groupoid version. Following this, an excursion to cofibrations and homotopy pushouts yields an alternative formulation of the theorem that puts the computation of fundamental groups of attaching spaces on firm ground. Simplicial homology is then defined, motivating the Eilenberg-Steenrod axioms, and the simplicial approximation theorem is proven. After verifying the axioms for singular homology, various versions of the Mayer-Vietoris sequence are derived and it is shown that homotopy classes of self-maps of spheres are classified by degree.The final chapter discusses cellular homology of CW complexes, culminating in the uniqueness theorem for ordinary homology.
Introduction to Algebraic Topology is suitable for a single-semester graduate course on algebraic topology. It can also be used for self-study, with numerous examples, exercises, and motivating remarks included.
Basic notions of category theory.- Fundamental groupoid and van Kampen's theorem.- Homology: ideas and axioms.- Singular homology.- Homology: computations and applications.- Cellular homology.- Appendix: Quotient topology.
Holger Kammeyer is Assistant Professor of Algebra and Geometry at the University of Dusseldorf. His research interests include algebraic topology as well as arithmetic and profinite groups. A particular field of his expertise is the theory of (2)-invariants on which he has authored the textbook Introduction to (2)-invariants (Lecture Notes in Mathematics, Volume 2247, Springer).
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Holger Kammeyer |
Collection | Yellow Sale 2024 |
Parution | 20/06/2022 |
Nb. de pages | 182 |
EAN13 | 9783030983123 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse