Foundations of Mathematical Analysis
Richard Johnsonbaugh, W.E. Pfaffenberger
Résumé
This classroom-tested volume offers students of
mathematics not only a well-defined view of the basics of
modern analysis but also a broad spectrum of the ways in
which analysis can be applied to statistics, numerical
analysis, Fourier series, differential equations,
mathematical analysis, and functional analysis.
A self-contained textbook, it offers the background
necessary for a firm grasp of the limit concept. (The first
seven chapters could constitute a one-semester course on
introduction to limits.) Subsequent chapters examine
differential calculus of the real line, the
Riemann-Stieltjes integral, sequences and series of
functions, transcendental functions, inner product spaces
and Fourier series, normed linear spaces and the Riesz
representation theorem, and the Lebesgue integral.
Supplementary materials include an appendix on vector
spaces and more than 750 exercises of varying degrees of
difficulty (hints and solutions to selected exercises,
indicated by an asterisk, appear at the back of the
book).
Upper-level undergraduate students with a background in
calculus will benefit from the teachings of this volume, as
will beginning graduate students seeking a firm grounding
in modern analysis.
Dover (2002) slightly corrected republication of the
edition published by Marcel Dekker, Inc., New York, 1981.
Preface. Preface to Dover edition. Index. Bibliography.
Appendix. Hints and Solutions to Selected Exercises. 34
Figures. xii*428pp. 5% x 8y2. Paperbound.
Contents
- Sets and Functions
- The Real Number System
- Set Equivalence
- Sequences of Real Numbers
- Infinite Series
- Limits of Real-Valued Functions and Continuous Functions on the Real Line
- Metric Spaces
- Differential Calculus of the Real Line
- The Riemann-Stieltjes Integral
- Sequences and Series of Functions
- Transcendental Functions
- Inner Product Spaces and Fourier Series
- Normed Linear Spaces and the Riesz Representation Theorem
- The Lebesgue Integral
L'auteur - Richard Johnsonbaugh
Richard Johnsonbaugh is Professor Emeritus of Computer Science at DePaul University. He has degrees in computer science and mathematics from the University of Oregon, Yale University, and the University of Illinois at Chicago. He is the author of numerous articles and books, including Discrete Mathematics, Fifth Edition, and, with co-author Martin Kalin, Object-Oriented Programming in C++, Second Edition, Applications Programming in C++, and Applications Programming in ANSI C, Third Edition.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Dover |
Auteur(s) | Richard Johnsonbaugh, W.E. Pfaffenberger |
Parution | 03/03/2003 |
Nb. de pages | 430 |
Format | 13,5 x 21,5 |
Couverture | Broché |
Poids | 460g |
Intérieur | Noir et Blanc |
EAN13 | 9780486421742 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse