Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
The Elements of Statistical Learning
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

The Elements of Statistical Learning

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Trevor Hastie, Robert Tibshirani, Jerome Friedman

534 pages, parution le 01/09/2001

Résumé

During the past decade there has been an explosion in computation and information technology. With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics.

Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry.

The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting - the first comprehensive treatment of this topic in any book.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Contents

  • Preface
  • 1 Introduction 1
  • 2 Overview of Supervised Learning 9
  • 3 Linear Methods for Regression 41
  • 4 Linear Methods for Classification 79
  • 5 Basis Expansions and Regularization 115
  • 6 Kernel Methods 165
  • 7 Model Assessment and Selection 193
  • 8 Model Inference and Averaging 225
  • 9 Additive Models, Trees, and Related Methods 257
  • 10 Boosting and Additive Trees 299
  • 11 Neural Networks 347
  • 12 Support Vector Machines and Flexible Discriminants 371
  • 13 Prototype Methods and Nearest-Neighbors 411
  • 14 Unsupervised Learning 437
  • References 509
  • Author Index 523
  • Index

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Trevor Hastie, Robert Tibshirani, Jerome Friedman
Parution 01/09/2001
Nb. de pages 534
Format 16 x 24
Couverture Relié
Poids 1079g
Intérieur Quadri
EAN13 9780387952840
ISBN13 978-0-387-95284-0

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription