
Determining Spectra in Quantum Theory
Michael Demuth, M. Krishna - Collection Progress in Mathematical Physics
Résumé
The spectral theory of Schrödinger operators, in particular those with random potentials, continues to be a very active field of research. This work focuses on various known criteria in the spectral theory of selfadjoint operators in order to identify the spectrum and its components à la Lebesgue decomposition. Key features and topics:
- Well-developed exposition of criteria that are especially useful in determining the spectra of deterministic and random Schrödinger operators occurring in quantum theory
- Systematically uses measures and their transforms (Fourier, Borel, wavelet) to present a unifying theme
- Establishes criteria for identifying the spectrum
- Examines a series of applications to show point spectrum and continuous spectrum in some models of random operators
- Presents a series of spectral-theoretic results for the perturbed operators introduced in the earlier chapters with examples of localization and delocalization in the theory of disordered systems
- Presents modern criteria (using wavelet transform, eigenfunction decay) that could be used to do spectral theory
- Unique work in book form combining the presentation of the deterministic and random cases, which will serve as a platform for further research activities
This concise unified presentation is aimed at graduate students and researchers working in the spectral theory of Schrödinger operators with either fixed or random potentials in particular. However, given the large gap that this book fills in the literature, it will serve a wider audience of mathematical physicists in its contribution to works in spectral theory.
Written for: Graduate students and researchers working in the spectral theory of Schrödinger
Sommaire
- Measures and transforms
- Selfadjointness and spectrum
- Criteria for identifying the spectrum
- Operators of Interest
- Applications
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Birkhäuser |
Auteur(s) | Michael Demuth, M. Krishna |
Collection | Progress in Mathematical Physics |
Parution | 12/10/2005 |
Nb. de pages | 220 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 465g |
Intérieur | Noir et Blanc |
EAN13 | 9780817643669 |
ISBN13 | 978-0-8176-4366-9 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Physique Physique fondamentale Etats de la matière
- Sciences Physique Physique fondamentale Physique et mécanique quantique
- Sciences Physique Physique fondamentale Physique des particules
- Sciences Physique Physique fondamentale Physique nucléaire et atomique
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Physique