Analytic Capacity, rectifiability, Menger Curvature and the Cauchy Integral
Résumé
Based on a graduate course given by the author at Yale University this book deals with complex analysis (analytic capacity), geometric measure theory (rectifiable and uniformly rectifiable sets) and harmonic analysis (boundedness of singular integral operators on Ahlfors-regular sets). In particular, these notes contain a description of Peter Jones' geometric traveling salesman theorem, the proof of the equivalence between uniform rectifiability and boundedness of the Cauchy operator on Ahlfors-regular sets, the complete proofs of the Denjoy conjecture and the Vitushkin conjecture (for the latter, only the Ahlfors-regular case) and a discussion of X. Tolsa's solution of the Painlevé problem.
Contents
Chapter 1. Some geometric measure theory- 1. Carleson measures
- 2. Lipschitz maps
- 3. Hausdorff dimension and Hausdorff measures
- 4. Density properties of Hausdorff measures
- 5. Rectifiable and purely unrectifiable sets
- 1. The β numbers
- 2. Characterization of subsets of rectifiable curves
- 3. Uniformly rectifiable sets
- 1. Definition and basic properties
- 2. Menger curvature and Lipschitz graphs
- 3. Menger curvature and β numbers
- 4. Menger curvature and Cantor type sets
- 5. P. Jones' construction of "good" measures supported on continua
- 1. The Hilbert transform
- 2. Singular integral operators
- 3. The Hardy-Littlewood maximal operator
- 4. The Calderon-Zygmund theory
- 5. The T1 and the Tb theorems
- 6. L2 boundedness of the Cauchy singular operator on Lipschitz graphs
- 7. Cauchy singular operator and rectifiability
- 1. Removable singularities
- 2. The Painlevé Problem
- 3. Some examples
- 4. Analytic capacity and metric size of sets
- 5. Garnett-Ivanov's counterexample
- 6. Who was Painlevé ?
- 1. The statements
- 2. The standard duality argument
- 3. Proof of the Denjoy conjecture
- 4. Proof of the Vitushkin conjecture
- 5. The Vitushkin conjecture for sets with infinite length
- 1. Melnikov's inequality
- 2. Tolsa's solution of the Painlevé problem
- 3. Concluding remarks and open problems
L'auteur - Hervé Pajot
University of Cergy-Pontoise, France
Autres livres de Hervé Pajot
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Hervé Pajot |
Parution | 31/12/2002 |
Nb. de pages | 128 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 218g |
Intérieur | Noir et Blanc |
EAN13 | 9783540000013 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse