An Introduction to Differential Geometry with Applications to Elasticity
Résumé
This book is based on a series of lectures delivered over the years by the author at the University Pierre et Marie Curie in Paris, at the University of Stuttgart, and at City University of Hong Kong. Its two-fold aim is to provide a thorough introduction to the basic theorems of differential geometry and to elasticity in curvilinear coordinates and shell theory.
To this end, the fundamental existence and uniqueness theorems are proved in great details. Such theorems include the fundamental theorem of surface theory, which asserts that the Gauss and Codazzi-Mainardi equations are sufficient for the existence of a surface with prescribed fundamental forms, as well as the corresponding rigidity theorem. Recent results, which have not yet appeared in book form are also included, such as the continuity of a surface as a function of its fundamental forms.
This book also provides a detailed description of the equations of nonlinear and linearized elasticity in curvilinear coordinates, together with a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The book also includes a detailed description of Koiter's equations for nonlinearly and linearly elastic shells, a complete analysis of the existence, uniqueness, and regularity of the solutions of Koiter's equations in the linear case.
The treatment is essentially self-contained and proofs are complete. In particular, no a priori knowledge of diferential geometry or elasticity theory or shell theory is assumed. Another highlight of this book is the focus on the interplay between "theoretical" and "applied" differential geometry. For instance, rather than being introduced in a formal way, covariant derivatives of a tensor field appear in a natural way in the course of the derivation of the basic boundary value problems of nonlinear elasticity in curvilinear coordinates and of shell theory.
Sommaire
- Preface
- Three-dimensional differential geometry
- Differential geometry of surfaces
- Applications to three-dimensional elasticity in curvilinear coordinates
- Applications to shell theory
- References
- Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Philippe G. Ciarlet |
Parution | 31/12/2005 |
Nb. de pages | 210 |
Format | 16,5 x 25 |
Couverture | Relié |
Poids | 535g |
Intérieur | Noir et Blanc |
EAN13 | 9781402042478 |
ISBN13 | 978-1-4020-4247-8 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Calcul différentiel et intégral
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie différentielle
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques