Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
An Introduction to Differential Geometry with Applications to Elasticity
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

An Introduction to Differential Geometry with Applications to Elasticity

An Introduction to Differential Geometry with Applications to Elasticity

Philippe G. Ciarlet

210 pages, parution le 31/12/2005

Résumé

This book is based on a series of lectures delivered over the years by the author at the University Pierre et Marie Curie in Paris, at the University of Stuttgart, and at City University of Hong Kong. Its two-fold aim is to provide a thorough introduction to the basic theorems of differential geometry and to elasticity in curvilinear coordinates and shell theory.

To this end, the fundamental existence and uniqueness theorems are proved in great details. Such theorems include the fundamental theorem of surface theory, which asserts that the Gauss and Codazzi-Mainardi equations are sufficient for the existence of a surface with prescribed fundamental forms, as well as the corresponding rigidity theorem. Recent results, which have not yet appeared in book form are also included, such as the continuity of a surface as a function of its fundamental forms.

This book also provides a detailed description of the equations of nonlinear and linearized elasticity in curvilinear coordinates, together with a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The book also includes a detailed description of Koiter's equations for nonlinearly and linearly elastic shells, a complete analysis of the existence, uniqueness, and regularity of the solutions of Koiter's equations in the linear case.

The treatment is essentially self-contained and proofs are complete. In particular, no a priori knowledge of diferential geometry or elasticity theory or shell theory is assumed. Another highlight of this book is the focus on the interplay between "theoretical" and "applied" differential geometry. For instance, rather than being introduced in a formal way, covariant derivatives of a tensor field appear in a natural way in the course of the derivation of the basic boundary value problems of nonlinear elasticity in curvilinear coordinates and of shell theory.

Sommaire

  • Preface
  • Three-dimensional differential geometry
  • Differential geometry of surfaces
  • Applications to three-dimensional elasticity in curvilinear coordinates
  • Applications to shell theory
  • References
  • Index
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Philippe G. Ciarlet
Parution 31/12/2005
Nb. de pages 210
Format 16,5 x 25
Couverture Relié
Poids 535g
Intérieur Noir et Blanc
EAN13 9781402042478
ISBN13 978-1-4020-4247-8

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription