Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Number Theory in Function Fields
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Number Theory in Function Fields

Number Theory in Function Fields

Michael Rosen

358 pages, parution le 24/01/2002

Résumé

Elementary number theory is concerned with arithmetic properties of the ring of integers. Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting, for example, analogues of the theorems of Fermat and Euler, Wilson theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlet theorem on primes in an arithmetic progression. After presenting the required foundational material on function fields, the later chapters explore the analogy between global function fields and algebraic number fields. A variety of topics are presented, including: the ABC-conjecture, Artin conjecture on primitive roots, the Brumer-Stark conjecture, Drinfeld modules, class number formulae, and average value theorems.

The first few chapters of this book are accessible to advanced undergraduates. The later chapters are designed for graduate students and professionals in mathematics and related fields who want to learn more about the very fruitful relationship between number theory in algebraic number fields and algebraic function fields. In this book many paths are set forth for future learning and exploration.

Contents

  1. Polynomials over Finite Fields.
  2. Primes, Arithmetic Functions, and the Zeta Function.
  3. The Reciprocity Law.
  4. Dirichlet L-series and Primes in an Arithmetic Progression.
  5. Algebraic Function Fields and Global Function Fields.
  6. Weil Differentials and the Canonical Class.
  7. Extensions of Function Fields, Riemann-Hurwitz, and the ABC Theorem.
  8. Constant Field Extensions.
  9. Galois Extensions
  10. Artin and Hecke L- functions.
  11. Artin's Primitive Root Conjecture.
  12. The Behavior of the Class Group in Constant Field Extensions.
  13. Cyclotomic Function Fields.
  14. Drinfeld Modules, An Introduction.
  15. S-Units, S-Class Group, and the Corresponding L-functions.
  16. The Brumer-Stark Conjecture.
  17. Class Number Formulas in Quadratic and Cyclotomic Function Fields.
  18. Average Value Theorems in Function Fields.

L'auteur - Michael Rosen

Michael Rosen is Chief Enterprise Architect at Genesis Development Corporation, an IONA Technologies' Company. He has over 20 years of experience in distributed computing technologies, including transaction processing, object systems, DCE, MOM, COM, and CORBA, and he coauthored Integrating CORBA and COM Applications (Wiley).

Autres livres de Michael Rosen

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Michael Rosen
Parution 24/01/2002
Nb. de pages 358
Format 16 x 24,3
Couverture Relié
Poids 684g
Intérieur Noir et Blanc
EAN13 9780387953359
ISBN13 978-0-387-95335-9

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription