Machine Learning on Geographical Data Using Python: Introduction into Geodata with Applications and
Joos Korstanje
Résumé
What You Will Learn
- Understand the fundamental concepts of working with geodata
- Work with multiple geographical data types and file formats in Python
- Create maps in Python
- Apply machine learning on geographical data
Readers with a basic understanding of machine learning who wish to extend their skill set to analysis of and machine learning on spatial data while remaining in a common data science Python environment
Chapter 2: Coordinate Systems and ProjectionsChapter Goal: Introduce coordinate systems and projectionsNo of pages: 20Sub - Topics 1. Geographical coordinates2. Geographical coordinate systems3. Map projections4. Conversions between coordinate systems
Chapter 3: Geodata Data Types: Points, Lines, Polygons, RasterChapter Goal: Explain the four main data types in geodataNo of pages : 20Sub - Topics: 1. Points2. Lines3. Polygons4. Raster
Chapter 4: Creating MapsChapter Goal: Learn how to create maps in PythonNo of pages : 20Sub - Topics: 1. Discover mapping libraries2. See how to create maps with different data types
Chapter 5: Basic Operations 1: Clipping and Intersecting in PythonChapter Goal: Learn clipping and intersecting in PythonNo of pages: 20Sub - Topics: 1. What is clipping?2. How to do clipping in Python?3. What is intersecting4. How to do intersecting in Python?
Chapter 6: Basic Operations 2: Buffering in PythonChapter Goal: Learn how to create buffers in PythonNo of pages: 20Sub - Topics: 1. What are buffers?2. How to create buffers in Python
Chapter 7: Basic Operations 3: Merge and Dissolve in PythonChapter Goal: Learn how to merge and dissolve in PythonNo of pages: 20Sub - Topics: 1. What is the merge operation?2. How to do the merge operation in Python?3. What is the dissolve operation?4. How to do the dissolve operation in Python?
Chapter 8: Basic Operations 4: Erase in PythonChapter Goal: Learn how to do an erase in PythonNo of pages: 20Sub - Topics: 1. What is the erase operation?2. How to apply the erase operation in Python
Chapter 9: Machine Learning: InterpolationChapter Goal: Learn how to do interpolation PythonNo of pages: 20Sub - Topics: 1.What is interpolation?2.How to do interpolation in Python3.Different methods for spatial interpolation in Python
Chapter 10: Machine Learning: ClassificationChapter Goal: Learn how to do classification on geodata in PythonNo of pages: 20Sub - Topics: 1.What is classification?2.How to do classification on geodata in Python?3.In depth example application of classification on geodata.
Chapter 11: Machine Learning: RegressionChapter Goal: Learn how to do regression on geodata in PythonNo of pages: 20Sub - Topics: 1.What is regression?2.How to do regression on geodata in Python?3.In depth example application of regression on geodata.
Chapter 12: Machine Learning: ClusteringChapter Goal: Learn how to do clustering on geodata in PythonNo of pages: 20Sub - Topics: 1.What is clustering?2.How to do clustering on geodata in Python?3.In depth example application of clustering on geodata.
Chapter 13: ConclusionChapter Goal: Regroup all the knowledge togetherNo of pages: 10Sub - Topics: 1.What have you learned?2.How to combine different practices together3. Other reflections for applying the topics in a real-world use case
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Apress |
Auteur(s) | Joos Korstanje |
Parution | 20/07/2022 |
Nb. de pages | 312 |
EAN13 | 9781484282861 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse