Graphical models for machine learning and digital communication
Résumé
Summary of contents
- Probabilistic inference in graphical models
- pattern classification
- unsupervised learning
- data compression
- channel coding
- future research directions
Table of contents
- Series Foreword
- Preface
- 1 Introduction
- 1.1 A probabilistic perspective
- 1.2 Graphical models: Factor graphs, Markov random
fields and Bayesian belief networks
- 1.3 Organization of this book
- 2 Probabilistic Inference in Graphical
Models
- 2.1 Exact inference using probability propagation (the
sum-product algorithm)
- 2.2 Monte Carlo inference: Gibbs sampling and slice
sampling
- 2.3 Variational inference
- 2.4 Helmholtz machines
- 3 Pattern Classification
- 3.1 Bayesian networks for pattern classification
- 3.2 Autoregressive networks
- 3.3 Estimating latent variable models using the EM
algorithm
- 3.4 Multiple-cause networks
- 3.5 Classification of handwritten digits
- 4 Unsupervised Learning
- 4.1 Extracting structure from images using the
wake-sleep algorithm
- 4.2 Simultaneous extraction of continuous and
categorical structure
- 4.3 Nonlinear Gaussian Bayesian networks (NLGBNs)
- 5 Data Compression
- 5.1 Fast compression with Bayesian networks
- 5.2 Communicating extra information through the
codeword choice
- 5.3 Relationship to maximum likelihood estimation
- 5.4 The "bits-back" coding algorithm
- 5.5 Experimental results
- 5.6 Integrating over model parameters using bits-back
coding
- 6 Channel Coding
- 6.1 Review: Simplifying the playing field
- 6.2 Graphical models for error correction: Turbocodes,
low-density parity-check codes and more
- 6.3 "A code by any other network would not decode as
sweetly"
- 6.4 Trellis-contrained codes (TCCs)
- 6.5 Decoding complexity of iterative decoders
- 6.6 Parallel iterative decoding
- 6.7 Speeding up iterative decoding by detecting
variables early
- 7 Future Research Directions
- 7.1 Modularity and abstraction
- 7.2 Faster inference and learning
- 7.3 Scaling up to the brain
- 7.4 Improving model structures
- 7.5 Iterative decoding
- 7.6 Iterative decoding in the real world
- 7.7 Unification
- References
- Index
L'auteur - Brendan J. Frey
is a Beckman Fellow, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | The MIT Press |
Auteur(s) | Brendan J. Frey |
Parution | 25/08/1998 |
Nb. de pages | 220 |
Format | 15,2 x 23 |
EAN13 | 9780262062022 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse