Graphical models for machine learning and digital communication
Résumé
Summary of contents
 
- Probabilistic inference in graphical models
 - pattern classification
 - unsupervised learning
 - data compression
 - channel coding
 - future research directions
 
Table of contents
- Series Foreword
 - Preface
 - 1 Introduction
 - 1.1 A probabilistic perspective
 - 1.2 Graphical models: Factor graphs, Markov random
fields and Bayesian belief networks
 - 1.3 Organization of this book
 - 2 Probabilistic Inference in Graphical
Models
 - 2.1 Exact inference using probability propagation (the
sum-product algorithm)
 - 2.2 Monte Carlo inference: Gibbs sampling and slice
sampling
 - 2.3 Variational inference
 - 2.4 Helmholtz machines
 - 3 Pattern Classification
 - 3.1 Bayesian networks for pattern classification
 - 3.2 Autoregressive networks
 - 3.3 Estimating latent variable models using the EM
algorithm
 - 3.4 Multiple-cause networks
 - 3.5 Classification of handwritten digits
 - 4 Unsupervised Learning
 - 4.1 Extracting structure from images using the
wake-sleep algorithm
 - 4.2 Simultaneous extraction of continuous and
categorical structure
 - 4.3 Nonlinear Gaussian Bayesian networks (NLGBNs)
 - 5 Data Compression
 - 5.1 Fast compression with Bayesian networks
 - 5.2 Communicating extra information through the
codeword choice
 - 5.3 Relationship to maximum likelihood estimation
 - 5.4 The "bits-back" coding algorithm
 - 5.5 Experimental results
 - 5.6 Integrating over model parameters using bits-back
coding
 - 6 Channel Coding
 - 6.1 Review: Simplifying the playing field
 - 6.2 Graphical models for error correction: Turbocodes,
low-density parity-check codes and more
 - 6.3 "A code by any other network would not decode as
sweetly"
 - 6.4 Trellis-contrained codes (TCCs)
 - 6.5 Decoding complexity of iterative decoders
 - 6.6 Parallel iterative decoding
 - 6.7 Speeding up iterative decoding by detecting
variables early
 - 7 Future Research Directions
 - 7.1 Modularity and abstraction
 - 7.2 Faster inference and learning
 - 7.3 Scaling up to the brain
 - 7.4 Improving model structures
 - 7.5 Iterative decoding
 - 7.6 Iterative decoding in the real world
 - 7.7 Unification
 - References
 - Index
 
L'auteur - Brendan J. Frey
is a Beckman Fellow, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign.
Caractéristiques techniques
| PAPIER | |
| Éditeur(s) | The MIT Press | 
| Auteur(s) | Brendan J. Frey | 
| Parution | 25/08/1998 | 
| Nb. de pages | 220 | 
| Format | 15,2 x 23 | 
| EAN13 | 9780262062022 | 
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
 - Les meilleures ventes en Informatique
 - Les meilleures ventes en Construction
 - Les meilleures ventes en Entreprise & Droit
 - Les meilleures ventes en Sciences
 - Les meilleures ventes en Littérature
 - Les meilleures ventes en Arts & Loisirs
 - Les meilleures ventes en Vie pratique
 - Les meilleures ventes en Voyage et Tourisme
 - Les meilleures ventes en BD et Jeunesse