Algebraic Statistics for Computational Biology
Résumé
The quantitative analysis of biological sequence data is based on methods from statistics coupled with efficient algorithms from computer science. Algebra provides a framework for unifying many of the seemingly disparate techniques used by computational biologists. This book offers an introduction to this mathematical framework and describes tools from computational algebra for designing new algorithms for exact, accurate results. These algorithms can be applied to biological problems such as aligning genomes, finding genes and constructing phylogenies.
The first part of this book consists of four chapters on the themes of Statistics, Computation, Algebra and Biology, offering speedy, self-contained introductions to the emerging field of algebraic statistics and its applications to genomics. In the second part, the four themes are combined and developed to tackle real problems in computational genomics. As the first book in the exciting and dynamic area, it will be welcomed as a text for self-study or for advanced undergraduate and beginning graduate courses.
- First book in an exciting area at intersection of computation, statistics, and genomics
- Has quick guides to background topics, then applies these in case studies at forefront of research
- Includes links to online software and ancillary material
L'auteur - Bernd Sturmfels
Bernd Sturmfels received doctoral degrees in 1987 from the University of Washington, Seattle and TU Darmstadt, Germany. After two postdoc years at the IMA in Minneapolis and RISC-Linz in Austria, he taught at Cornell University before joining UC Berkeley in 1995, where he is now Professor of Mathematics and Computer Science. A leading experimentalist among mathematicians, Sturmfels has authored seven books and over 130 research articles in the areas of combinatorics, algebraic geometry, symbolic computation, and their applications, and he has mentored 16 doctoral students.
Sommaire
- Introduction to the four themes
- Statistics
- Computation
- Algebra
- Biology
- Studies on the four themes
- Parametric inference
- Polytope propagation on graphs
- Parametric sequence alignment
- Bounds for optimal sequence alignment
- Inference functions
- Geometry of Markov chains
- Equations defining hidden Markov models
- The EM algorithm for hidden Markov models
- Homology mapping with Markov random fields
- Mutagenetic tree models
- Catalog of small trees
- The strand symmetric model
- Extending tree models to splits networks
- Small trees and generalized neighbor-joining
- Tree construction using singular value decomposition
- Applications of interval methods to phylogenetics
- Analysis of point mutations in vertebrate genomes
- Ultra-conserved elements in vertebrate and fly genomes
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Cambridge University Press |
Auteur(s) | Lior Pachter, Bernd Sturmfels |
Parution | 30/11/2005 |
Nb. de pages | 430 |
Format | 18 x 26 |
Couverture | Relié |
Poids | 1060g |
Intérieur | Noir et Blanc |
EAN13 | 9780521857000 |
ISBN13 | 978-0-521-85700-0 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Biostatistiques
- Sciences Mathématiques Mathématiques appliquées Statistiques Analyse de données
- Sciences Sciences de la vie
- Sciences Sciences de la vie Biologie
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Chimie