A Wavelet Tour of Signal Processing,
Résumé
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York Universite and Ecole Polytechnique in Paris. Features: Provides a broad perspective on the principles and applications of transient signal processing with wavelets Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition: Optical flow calculation and video compression algorithms Image models with bounded variation functions Bayes and Minimax theories for signal estimation 200 pages rewritten and most illustrations redrawn More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics
Preface to the Second Edition xx Notation xxii Introduction to a Transient World Fourier Kingdom 2 Time-Frequency Wedding 2 Windowed Fourier Transform 3 Wavelet Transform 4 Bases of Time-Frequency Atoms 6 Wavelet Bases and Filter Banks 7 Tilings of Wavelet Packet and Local 9 Cosine Bases Bases for What? 11 Approximation 12 Estimation 14 Compression 16 Travel Guide 17 Reproducible Computational Science 17 Road Map 18 Fourier Kingdom Linear Time-Invariant Filtering1 20 Impulse Response 21 Transfer Functions 22 Fourier Integrals1 22 Fourier Transform in L1(R) 23 Fourier Transform in L2(R) 25 Examples 27 Properties1 29 Regularity and Decay 29 Uncertainty Principle 30 Total Variation 33 Two-Dimensional Fourier Transform1 38 Problems 40 Discrete Revolution Sampling Analog Signals1 42 Whittaker Sampling Theorem 43 Aliasing 44 General Sampling Theorems 47 Discrete Time-Invariant Filters1 49 Impulse Response and Transfer Function 49 Fourier Series 51 Finite Signals1 54 Circular Convolutions 55 Discrete Fourier Transform 55 Fast Fourier Transform 57 Fast Convolutions 58 Discrete Image Processing1 59 Two-Dimensional Sampling Theorem 60 Discrete Image Filtering 61 Circular Convolutions and Fourier Basis 62 Problems 64 Time Meets Frequency Time-Frequency Atoms1 67 Windowed Fourier Transform1 69 Completeness and Stability 72 Choice of Window2 75 Discrete Windowed Fourier Transform2 77 Wavelet Transforms1 79 Real Wavelets 80 Analytic Wavelets 84 Discrete Wavelets2 89 Instantaneous Frequency2 91 Windowed Fourier Ridges 94 Wavelet Ridges 102 Quadratic Time-Frequency Energy1 107 Wigner-Ville Distribution 107 Interferences and Positivity 112 Cohen's Class2 116 Discrete Wigner-Ville Computations2 120 Problems 121 Frames Frame Theory2 125 Frame Definition and Sampling 125 Pseudo Inverse 127 Inverse Frame Computations 132 Frame Projector and Noise Reduction 135 Windowed Fourier Frames2 138 Wavelet Frames2 143 Translation Invariance1 146 Dyadic Wavelet Transform2 148 Wavelet Design 150 ``Algorithme a Trous' 153 Oriented Wavelets for a Vision3 156 Problems 160 Wavelet Zoom Lipschitz Regularity1 163 Lipschitz Definition and Fourier Analysis 164 Wavelet Vanishing Moments 166 Regularity Measurements with Wavelets 169 Wavelet Transform Modulus Maxima2 176 Detection of Singularities 176 Reconstruction From Dyadic Maxima3 183 Multiscale Edge Detection2 189 Wavelet Maxima for Images2 189 Fast Multiscale Edge Computations3 197 Multifractals2 200 Fractal Sets and Self-Similar Functions 200 Singularity Spectrum3 205 Fractal Noises3 211 Problems 216 Wavelet Bases Orthogonal Wavelet Bases1 220 Multiresolution Approximations 221 Scaling Function 224 Conjugate Mirror Filters 228 In Which Orthogonal Wavelets Finally 235 Arrive Classes of Wavelet Bases1 241 Choosing a Wavelet 241 Shannon, Meyer and Battle-Lemarie Wavelets 246 Daubechies Compactly Supported Wavelets 249 Wavelets and Filter Banks1 255 Fast Orthogonal Wavelet Transform 255 Perfect Reconstruction Filter Banks 259 Biorthogonal Bases of l2(Z)2 263 Biorthogonal Wavelet Bases2 265 Construction of Biorthogonal Wavelet Bases 265 Biorthogonal Wavelet Design2 268 Compactly Supported Biorthogonal Wavelets2 270 Lifting Wavelets3 273 Wavelet Bases on an Interval2 281 Periodic Wavelets 282 Folded Wavelets 284 Boundary Wavelets3 286 Multiscale Interpolations2 293 Interpolation and Sampling Theorems 293 Interpolation Wavelet Basis3 299 Separable Wavelet Bases1 303 Separable Multiresolutions 304 Two-Dimensional Wavelet Bases 306 Fast Two-Dimensional Wavelet Transform 310 Wavelet Bases in Higher Dimensions2 313 Problems 314 Wavelet Packet and Local Cosine Bases Wavelet Packets2 322 Wavelet Packet Tree 322 Time-Frequency Localization 327 Particular Wavelet Packet Bases 333 Wavelet Packet Filter Banks 336 Image Wavelet Packets2 339 Wavelet Packet Quad-Tree 339 Separable Filter Banks 341 Block Transforms1 343 Block Bases 344 Cosine Bases 346 Discrete Cosine Bases 349 Fast Discrete Cosine Transforms2 350 Lapped Orthogonal Transforms2 353 Lapped Projectors 353 Lapped Orthogonal Bases 359 Local Cosine Bases 361 Discrete Lapped Transforms 364 Local Cosine Trees2 368 Binary Tree of Cosine Bases 369 Tree of Discrete Bases 371 Image Cosine Quad-Tree 372 Problems 374 An Approximation Tour Linear Approximations1 377 Linear Approximation Error 377 Linear Fourier Approximations 378 Linear Multiresolution Approximations 382 Karhunen-Loeve Approximations2 385 Non-Linear Approximations1 389 Non-Linear Approximation Error 389 Wavelet Adaptive Grids 391 Besov Spaces3 394 Image Approximations with Wavelets1 398 Adaptive Basis Selection2 405 Best Basis and Schur Concavity 406 Fast Best Basis Search in Trees 411 Wavelet Packet and Local Cosine Best Bases 413 Approximations with Pursuits3 417 Basis Pursuit 418 Matching Pursuit 421 Orthogonal Matching Pursuit 428 Problems 430 Estimations are Approximations Bayes Versus Minimax2 435 Bayes Estimation 435 Minimax Estimation 442 Diagonal Estimation in a Basis2 446 Diagonal Estimation with Oracles 446 Thresholding Estimation 450 Thresholding Refinements3 455 Wavelet Thresholding 458 Best Basis Thresholding3 466 Minimax Optimality3 469 Linear Diagonal Minimax Estimation 469 Orthosymmetric Sets 474 Nearly Minimax with Wavelets 479 Restoration3 486 Estimation in Arbitrary Gaussian Noise 486 Inverse Problems and Deconvolution 491 Coherent Estimation3 501 Coherent Basis Thresholding 502 Coherent Matching Pursuit 505 Spectrum Estimation2 507 Power Spectrum 508 Approximate Karhunen-Loeve Search3 512 Locally Stationary Processes3 516 Problems 520 Transform Coding Signal Compression2 526 State of the Art 526 Compression in Orthonormal Bases 527 Distortion Rate of Quantization2 528 Entropy Coding 529 Scalar Quantization 537 High Bit Rate Compression2 540 Bit Allocation 540 Optimal Basis and Karhunen-Loeve 542 Transparent Audio Code 544 Image Compression2 548 Deterministic Distortion Rate 548 Wavelet Image Coding 557 Block Cosine Image Coding 561 Embedded Transform Coding 566 Minimax Distortion Rate3 571 Video Signals2 577 Optical Flow 577 MPEG Video Compression 585 Problems 587 APPENDIX A MATHEMATICAL COMPLEMENTS A.1 Functions and Integration 591 A.2 Banach and Hilbert Spaces 593 A.3 Bases of Hilbert Spaces 595 A.4 Linear Operators 596 A.5 Separable Spaces and Bases 598 A.6 Random Vectors and Covariance Operators 599 A.7 Diracs 601 APPENDIX B SOFTWARE TOOLBOXES B.1 WaveLab 603 B.2 LastWave 609 B.3 Freeware Wavelet Toolboxes 610 Bibliography 612 Index 629
L'auteur - Stephane Mallat
is an Associate Professor in the Computer Science
Department of the Courant institute of Mathematical
Sciences at New York University, and a Professor in the
Applied Mathematics Department at Ecole Polytechnique,
Paris, France. He has been a visiting Professor in the
Electrical Engineering Department at Massachusetts
Institute of Technology and in the Applied Mathematics
Department at the University of Tel Aviv. His research
interests include computer vision, signal processing and
diverse applications of wavelet transforms. Dr. Mallat
received the 1990 IEEE Signal Processing Society's paper
award, the 1993 Alfred Sloan fellowship in Mathematics, the
1997 Outstanding Achievement Award from the SPIE Optical
Engineering Society, and the 1997 Blaise Pascal Prize in
applied mathematics, from the French Academy of
Sciences.
Autres livres de Stephane Mallat
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Apress |
Auteur(s) | Stephane Mallat |
Parution | 01/09/1999 |
Édition | 2eme édition |
Nb. de pages | 637 |
Intérieur | Noir et Blanc |
EAN13 | 9780124666061 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse