
Résumé
The creation of photorealistic images of three-dimensional models is central to computer graphics. Photon mapping, an extension of ray tracing, makes it possible to efficiently simulate global illumination in complex scenes. Photon mapping can simulate caustics (focused light, like shimmering waves at the bottom of a swimming pool), diffuse inter-reflections (e.g., the “bleeding” of colored light from a red wall onto a white floor, giving the floor a reddish tint), and participating media (such as clouds or smoke). This book is a practical guide to photon mapping; it provides both the theory and the practical insight necessary to implement photon mapping and simulate all types of direct and indirect illumination efficiently.
Contents- 1 Introduction
- 1.1 Realistic Image Synthesis
- 1.2 Global Illumination
- 1.2.1 Ray-Tracing Techniques
- 1.2.2 Finite Element Radiosity Techniques
- 1.2.3 Hybrid and Multi-Pass Techniques
- 1.2.4 Photon Mapping
- 1.3 Overview of This Book
- 2 Fundamentals of Global Illumination
- 2.1 The Nature of Light
- 2.2 Lighting Terminology
- 2.2.1 Radiometry
- 2.2.2 Photometry
- 2.2.3 The Solid Angle
- 2.3 Light Emission
- 2.4 Light Scattering
- 2.4.1 The BSSRDF
- 2.4.2 The BRDF
- 2.4.3 The Reflectance
- 2.4.4 Diffuse Reflection
- 2.4.5 Specular Reflection
- 2.4.6 Reflection Models
- 2.5 The Rendering Equation
- 2.5.1 The Radiosity Equation
- 2.5.2 Neumann Series Expansion
- 2.5.3 Path Integral Formulation
- 2.6 Light Transport Notation
- 3 Monte Carlo Ray Tracing
- 3.1 Classic Ray Tracing
- 3.1.1 Algorithm
- 3.2 Path Tracing
- 3.2.1 Algorithm
- 3.3 Bidirectional Path Tracing
- 3.3.1 Algorithm
- 3.4 Metropolis Light Transport
- 3.4.1 Algorithm
- 4 The Photon-Mapping Concept
- 4.1 Motivation
- 4.2 Developing the Model
- 4.3 Overview
- 5 Photon Tracing
- 5.1 Photon Emission
- 5.1.1 Diffuse Point Light
- 5.1.2 Spherical Light
- 5.1.3 Square Light
- 5.1.4 Directional Light
- 5.1.5 Complex Light
- 5.1.6 Multiple Lights
- 5.1.7 Projection Maps
- 5.2 Photon Scattering
- 5.2.1 Specular Reflection
- 5.2.2 Diffuse Reflection
- 5.2.3 Arbitrary BRDF Reflection
- 5.2.4 Russian Roulette
- 5.3 Photon Storing
- 6 The Photon Map Data Structure
- 6.1 The Data Structure
- 6.2 Photon Representation
- 6.3 The Balanced Kd-Tree
- 6.3.1 Memory Layout
- 6.3.2 Balancing Algorithm
- 6.4 Locating the Nearest Photons Efficiently
- 6.4.1 Algorithm
- 7 The Radiance Estimate
- 7.1 Density Estimation
- 7.2 Derivation
- 7.3 Algorithm
- 7.4 Filtering
- 7.4.1 The Cone Filter
- 7.4.2 The Gaussian Filter
- 7.4.3 Differential Checking
- 7.5 Photon Gathering
- 8 Visualizing the Photon Map
- 8.1 Rendering Caustics
- 8.2 Rendering Color Bleeding
- 8.2.1 Excluding Direct Illumination
- 8.3 Fast Approximations
- 8.4 Caustics Examples
- 8.4.1 Reflection Inside a Ring
- 8.4.2 Prism with Dispersion
- 8.4.3 Caustics on a Non-Lambertian Surface
- 8.4.4 A Glass of Cognac on a Rough Surface
- 9 A Practical Two-Pass Algorithm
- 9.1 Overview
- 9.2 Solving the Rendering Equation
- 9.3 Pass 1: Photon Tracing
- 9.3.1 The Caustics Photon Map
- 9.3.2 The Global Photon Map
- 9.4 Pass 2: Rendering
- 9.4.1 Direct Illumination
- 9.4.2 Specular and Glossy Reflection
- 9.4.3 Caustics
- 9.4.4 Multiple Diffuse Reflections
- 9.5 Examples
- 9.5.1 The Four Rendering Components
- 9.5.2 Fractal Box
- 9.5.3 Box with Water
- 9.5.4 Global Illumination on a Point Cloud
- 9.5.5 A Mountain Landscape
- 9.5.6 The Courtyard House by Mies van der Rohe
- 10 Participating Media
- 10.1 Light Scattering in Participating Media
- 10.2 The Volume Rendering Equation
- 10.3 The Phase Function
- 10.3.1 Isotropic Scattering
- 10.3.2 The Henyey-Greenstein Phase Function
- 10.3.3 The Schlick Phase Function
- 10.3.4 Other Phase Functions
- 10.4 Ray Marching
- 10.4.1 Adaptive Ray Marching
- 10.5 Photon Tracing
- 10.5.1 Photon Scattering
- 10.5.2 Photon Storing
- 10.5.3 Photon Emission
- 10.6 The Volume Radiance Estimate
- 10.7 Rendering Participating Media
- 10.8 Subsurface Scattering
- 10.8.1 Photon Tracing
- 10.8.2 Rendering
- 10.9 Examples
- 10.9.1 Rising Smoke
- 10.9.2 Smoke Flowing past a Sphere
- 10.9.3 A Volume Caustic
- 10.9.4 Michelangelo's David
- 10.9.5 A Weathered Granite Sphinx
- 10.9.6 A Translucent Marble Bust
- 11 Optimization Strategies
- 11.1 Irradiance Caching
- 11.1.1 Irradiance Gradients
- 11.1.2 Irradiance Caching and Photon Mapping
- 11.2 Importance Sampling
- 11.3 Visual Importance
- 11.3.1 A Three-Pass Technique
- 11.4 Efficient Stratification of Photons
- 11.5 Faster Shadows with Shadow Photons
- 11.6 Precomputed Irradiance
- 11.7 Parallel Computations
- A Basic Monte Carlo Integration
- A.1 The Sample Mean Method
- A.2 Variance-Reduction Techniques
- B A Photon Map Implementation in C++
- C A Cognac Glass Model
L'auteur - Henrik Jensen
Dr. Henrik Wann Jensen is a Research Associate at
Stanford University where he is working in the computer
graphics group on realistic image synthesis, global
illumination, and new appearance models. His contributions
to computer graphics include the photon mapping algorithm
for global illumination, and the first BSSRDF for
simulating subsurface scattering in translucent materials.
He is the author of "Realistic Image Synthesis using Photon
Mapping", AK Peters 2001. Prior to coming to Stanford in
1999, he was a postdoctoral researcher at MIT, and a
research scientist in industry where he added photon maps
to a commercial renderer. He received his M.Sc. and Ph.D.
in Computer Science from the Technical University of
Denmark for developing the photon mapping method.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | AK Peters |
Auteur(s) | Henrik Jensen |
Parution | 15/06/2001 |
Nb. de pages | 182 |
Format | 15,5 x 23,5 |
Couverture | Relié |
Poids | 470g |
Intérieur | Noir et Blanc |
EAN13 | 9791568811474 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Techniques de programmation Programmation fonctionnelle
- Informatique Développement d'applications Techniques de programmation Programmation parallèle et multithreading
- Informatique Développement d'applications Algorithmique et informatique appliquée
- Informatique Développement d'applications Technologies objet Programmation objet