LIVRAISON GARANTIE avant Noël pour vos achats avec Colissimo jusqu'au 19 décembre inclus sur tous les livres disponibles en stock
Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Disponible en magasin

Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building

Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building

Valliappa Lakshmanan

400 pages, parution le 30/10/2020

Résumé

The design patterns in this book capture best practices and solutions to recurring problems in machine learning. Authors Valliappa Lakshmanan, Sara Robinson, and Michael Munn catalog the first tried-and-proven methods to help engineers tackle problems that frequently crop up during the ML process.The design patterns in this book capture best practices and solutions to recurring problems in machine learning. Authors Valliappa Lakshmanan, Sara Robinson, and Michael Munn catalog the first tried-and-proven methods to help engineers tackle problems that frequently crop up during the ML process. These design patterns codify the experience of hundreds of experts into advice you can easily follow. The authors, three Google Cloud engineers, describe 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the most appropriate remedy for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure that models are treating users fairlyValliappa (Lak) Lakshmanan is Global Head for Data Analytics and AI Solutions on Google Cloud. His team builds software solutions for business problems using Google Cloud's data analytics and machine learning products. He founded Google's Advanced Solutions Lab ML Immersion program. Before Google, Lak was a Director of Data Science at Climate Corporation and a Research Scientist at NOAA

Caractéristiques techniques

  PAPIER
Éditeur(s) O'Reilly
Auteur(s) Valliappa Lakshmanan
Parution 30/10/2020
Nb. de pages 400
EAN13 9781098115784

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription