LIVRAISON GARANTIE avant Noël pour vos achats avec Colissimo jusqu'au 19 décembre inclus sur tous les livres disponibles en stock
Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Low-Code AI: A Practical Project-Driven Introduction to Machine Learning
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Disponible en magasin

Low-Code AI: A Practical Project-Driven Introduction to Machine Learning

Low-Code AI: A Practical Project-Driven Introduction to Machine Learning

Gwendolyne / Abel Stripling

350 pages, parution le 30/10/2023

Résumé

This hands-on guide presents three problem-focused ways to learn ML: no code using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. You'll learn key ML concepts by using real-world datasets with realistic problems.Take a data-first and use-case driven approach to understanding machine learning and deep learning concepts with Low-Code AI. This hands-on guide presents three problem-focused ways to learn ML: no code using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. You'll learn key ML concepts by using real-world datasets with realistic problems. Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data, feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications. You'll learn how to: Distinguish structured and unstructured data and understand the different challenges they present Visualize and analyze data Preprocess data for input into a machine learning model Differentiate between the regression and classification supervised learning models Compare different machine learning model types and architectures, from no code to low-code to custom training Design, implement, and tune ML models Export data to a GitHub repository for data management and governance

Caractéristiques techniques

  PAPIER
Éditeur(s) O'reilly
Auteur(s) Gwendolyne / Abel Stripling
Parution 30/10/2023
Nb. de pages 350
EAN13 9781098146825

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription