Foundations of inductive logic programming
S.H. Nienhuys-Cheng, R. de Wolf - Collection Lecture Notes in Computer Science
Résumé
Table of contents :
About the Book XIII I Logic 1 1 Propositional Logic 3 1.1 Introduction 3 1.2 Syntax 4 1.3 Semantics 5 1.3.1 Informally 5 1.3.2 Interpretations 7 1.3.3 Models 9 1.4 Conventions to Simplify Notation 15 1.5 Summary 15 2 First-Order Logic 17 2.1 Introduction 17 2.2 Syntax 18 2.3 Semantics 22 2.3.1 Informally 22 2.3.2 Interpretations 24 2.3.3 Models 29 2.4 Conventions to Simplify Notation 33 2.5 Summary 34 3 Normal Forms and Herbrand Models 35 3.1 Introduction 35 3.2 Prenex Conjunctive Normal Form 36 3.3 Skolem Standard Form 39 3.3.1 Clauses and Universal 39 Quantification 3.3.2 Standard Form 40 3.4 Herbrand Models 45 3.5 Results Concerning Herbrand Models 48 3.6 Summary 50 3.A Alternative Notation for Standard Forms 51 4 Resolution 55 4.1 Introduction 55 4.2 What Is a Proof Procedure? 57 4.3 Substitution and Unification 59 4.3.1 Substitution 59 4.3.2 Unification 63 4.4 An Informal Introduction to Resolution 65 4.5 A Formal Treatment of Resolution 68 4.6 Summary 73 5 Subsumption Theorem and Refutation 75 Completeness 5.1 Introduction 75 5.2 Deductions 77 5.3 The Subsumption Theorem 78 5.3.1 The Subsumption Theorem for Ground 78 XXX and C 5.3.2 The Subsumption Theorem when C is 79 Ground 5.3.3 The Subsumption Theorem (General 82 Case) 5.4 Refutation Completeness 84 5.4.1 From the Subsumption Theorem to 84 Refutation Completeness 5.4.2 From Refutation Completeness to 84 the Subsumption Theorem 5.5 Proving Non-Clausal Logical Implication 87 5.6 How to Find a Deduction 87 5.7 Summary 90 5.8 Alternative Definitions of Resolution 91 6 Linear and Input Resolution 93 6.1 Introduction 93 6.2 Linear Resolution 94 6.3 Refutation Completeness 95 6.4 The Subsumption Theorem 98 6.5 The Incompleteness of Input Resolution 100 6.6 Summary 103 7 SLD-Resolution 105 7.1 Introduction 105 7.2 SLD-Resolution 106 7.3 Soundness and Completeness 108 7.3.1 Refutation Completeness 108 7.3.2 The Subsumption Theorem 109 7.4 Definite Programs and Least Herbrand 111 Models 7.5 Correct Answers and Computed Answers 113 7.6 Computation Rules 119 7.7 SLD-Trees 122 7.8 Undecidability 125 7.9 Summary 126 8 SLDNF-Resolution 127 8.1 Introduction 127 8.2 Negation as Failure 130 8.3 SLDNF-Trees for Normal Programs 133 8.4 Floundering, and How to Avoid It 141 8.5 The Completion of a Normal Program 145 8.6 Soundness with Respect to the 150 Completion 8.7 Completeness 153 8.8 Prolog 154 8.8.1 Syntax 154 8.8.2 Prolog and SLDNF-Trees 155 8.8.3 The Cut Operator 157 8.9 Summary 159 II Inductive Logic Programming 161 9 What Is Inductive Logic Programming? 163 9.1 Introduction 163 9.2 The Normal Problem Setting for ILP 165 9.3 The Nonmonotonic Problem Setting 172 9.4 Abduction 173 9.5 A Brief History of the Field 174 9.6 Summary 177 10 The Framework for Model Inference 179 10.1 Introduction 179 10.2 Formalizing the Problem 180 10.2.1 Enumerations and the Oracle 180 10.2.2 Complete Axiomatizations and 182 Admissibility 10.2.3 Formal Statement of the Problem 184 10.3 Finding a False Clause by Backtracing 186 10.4 Introduction to Refinement Operators 191 10.5 The Model Inference Algorithm 192 10.6 Summary 195 11 Inverse Resolution 197 11.1 Introduction 197 11.2 The V-Operator 198 11.3 The W-Operator 203 11.4 Motivation for Studying Generality 205 Orders 11.5 Summary 205 12 Unfolding 207 12.1 Introduction 207 12.2 Unfolding 209 12.3 UDS Specialization 213 12.4 Summary 217 13 The Lattice and Cover Structure of Atoms 219 13.1 Introduction 219 13.2 Quasi-Ordered Sets 220 13.3 Quasi-Ordered Sets of Clauses 225 13.4 Atoms as a Quasi-Ordered Set 225 13.4.1 Greatest Specializations 227 13.4.2 Least Generalizations 227 13.5 Covers 232 13.5.1 Downward Covers 232 13.5.2 Upward Covers 234 13.6 Finite Chains of Downward Covers 234 13.7 Finite Chains of Upward Covers 237 13.8 Size 240 13.9 Summary 241 14 The Subsumption Order 243 14.1 Introduction 243 14.2 Clauses Considered as Atoms 243 14.3 Subsumption 245 14.4 Reduction 247 14.5 Inverse Reduction 249 14.6 Greatest Specializations 251 14.7 Least Generalizations 252 14.8 Covers in the Subsume Order 256 14.8.1 Upward Covers 256 14.8.2 Downward Covers 257 14.9 A Complexity Measure for Clauses 260 14.9.1 Size as Defined by Reynolds 260 14.9.2 A New Complexity Measure 261 14.10 Summary 262 15 The Implication Order 265 15.1 Introduction 265 15.2 Least Generalizations 266 15.2.1 A Sufficient Condition for the 267 Existence of an LGI 15.2.2 The LGI is Computable 274 15.3 Greatest Specializations 275 15.4 Covers in the Implication Order 277 15.5 Summary 278 16 Background Knowledge 279 16.1 Introduction 279 16.2 Relative Subsumption 281 16.2.1 Definition and Some Properties 281 16.2.2 Least Generalizations 285 16.3 Relative Implication 287 16.3.1 Definition and Some Properties 287 16.3.2 Least Generalizations 288 16.4 Generalized Subsumption 289 16.4.1 Definition and Some Properties 289 16.4.2 Least Generalizations 294 16.5 Summary 297 17 Refinement Operators 299 17.1 Introduction 299 17.2 Ideal Refinement Operators for Atoms 300 17.3 Non-Existence of Ideal Refinement 303 Operators 17.4 Complete Operators for Subsumption 305 17.4.1 Downward 305 17.4.2 Upward 306 17.5 Ideal Operators for Finite Sets 310 17.5.1 Downward 311 17.5.2 Upward 315 17.6 Optimal Refinement Operators 316 17.7 Refinement Operators for Theories 317 17.8 Summary 319 18 PAC Learning 321 18.1 Introduction 321 18.2 PAC Algorithms 322 18.3 Sample Complexity 324 18.4 Time Complexity 326 18.4.1 Representations 326 18.4.2 Polynomial Time PAC Learnability 328 18.5 Some Related Settings 329 18.5.1 Polynomial Time PAC Predictability 329 18.5.2 Membership Queries 330 18.5.3 Identification from Equivalence 330 Queries 18.5.4 Learning with Noise 331 18.6 Results in the Normal ILP Setting 332 18.6.1 The Normal ILP Setting in PAC 333 Terms 18.6.2 Learning Non-recursive Programs 335 18.6.3 Learning Recursive Programs 338 18.7 Results in the Nonmonotonic Setting 340 18.8 Summary 341 18.A A Polynomial Time Decision Procedure 342 19 Further Topics 345 19.1 Introduction 345 19.2 Language Bias 346 19.3 Predicate Invention 347 19.4 Flattening 350 19.5 Imperfect Data 352 19.6 Implementation and Application 354 19.7 What Has Not Been Covered 358 19.8 Summary 359 19.A A Results for Flattening 360 List of Symbols 365 Bibliography 369 Author Index 391 Subject Index 395
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | S.H. Nienhuys-Cheng, R. de Wolf |
Collection | Lecture Notes in Computer Science |
Parution | 07/08/1997 |
Nb. de pages | 404 |
EAN13 | 9783540629276 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse