LIVRAISON GARANTIE avant Noël pour vos achats avec Colissimo jusqu'au 19 décembre inclus sur tous les livres disponibles en stock
Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Essential Math for Data Science: Take Control of Your Data with Fundamental Linear Algebra, Probabil
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Disponible en magasin

Essential Math for Data Science: Take Control of Your Data with Fundamental Linear Algebra, Probabil

Essential Math for Data Science: Take Control of Your Data with Fundamental Linear Algebra, Probabil

Thomas Nield

350 pages, parution le 30/10/2022

Résumé

To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus. Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to: Recognize the nuances and pitfalls of probability math Master statistics and hypothesis testing (and avoid common pitfalls) Discover practical applications of probability, statistics, calculus, and machine learning Intuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and added Perform calculus derivatives and integrals completely from scratch in Python Apply what you've learned to machine learning, including linear regression, logistic regression, and neural networksThomas Nield is the founder of Nield Consulting Group as well as an instructor at O'Reilly Media and University of Southern California. He enjoys making technical content relatable and relevant to those unfamiliar or intimidated by it. Thomas regularly teaches classes on data analysis, machine learning, mathematical optimization, and practical artificial intelligence. He's authored two books, including Getting Started with SQL (O'Reilly) and Learning RxJava (Packt).

Caractéristiques techniques

  PAPIER
Éditeur(s) O'Reilly
Auteur(s) Thomas Nield
Parution 30/10/2022
Nb. de pages 350
EAN13 9781098102937

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription