Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Disponible en magasin

Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control

Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control

Steven L. / Kutz Brunton

614 pages, parution le 04/05/2022

Résumé

Data-driven discovery is revolutionizing how we model, predict, and control complex systems. This text integrates emerging machine learning and data science methods for engineering and science communities. Now with Python and MATLAB (R), new chapters on reinforcement learning and physics-informed machine learning, and supplementary videos and code.Data-driven discovery is revolutionizing how we model, predict, and control complex systems. Now with Python and MATLAB (R), this textbook trains mathematical scientists and engineers for the next generation of scientific discovery by offering a broad overview of the growing intersection of data-driven methods, machine learning, applied optimization, and classical fields of engineering mathematics and mathematical physics. With a focus on integrating dynamical systems modeling and control with modern methods in applied machine learning, this text includes methods that were chosen for their relevance, simplicity, and generality. Topics range from introductory to research-level material, making it accessible to advanced undergraduate and beginning graduate students from the engineering and physical sciences. The second edition features new chapters on reinforcement learning and physics-informed machine learning, significant new sections throughout, and chapter exercises. Online supplementary material - including lecture videos per section, homeworks, data, and code in MATLAB (R), Python, Julia, and R - available on databookuw.com.Part I. Dimensionality Reduction and Transforms: 1. Singular Value Decomposition; 2. Fourier and Wavelet Transforms; 3. Sparsity and Compressed Sensing; Part II. Machine Learning and Data Analysis: 4. Regression and Model Selection; 5. Clustering and Classification; 6. Neural Networks and Deep Learning; Part III. Dynamics and Control: 7. Data-Driven Dynamical Systems; 8. Linear Control Theory; 9. Balanced Models for Control; Part IV. Advanced Data-Driven Modeling and Control: 10. Data-Driven Control; 11. Reinforcement Learning; 12. Reduced Order Models (ROMs); 13. Interpolation for Parametric ROMs; 14. Physics-Informed Machine Learning.Steven L. Brunton is the James B. Morrison Professor of Mechanical Engineering at the University of Washington and Associate Director of the NSF AI Institute in Dynamic Systems. He is also Adjunct Professor of Applied Mathematics and Computer Science and a Data-Science Fellow at the eScience Institute. His research merges data science and machine learning with dynamical systems and control, with applications in fluid dynamics, biolocomotion, optics, energy systems, and manufacturing. He is an author of three textbooks, and received the UW College of Engineering Teaching award, the Army and Air Force Young Investigator Program (YIP) awards, and the Presidential Early Career Award for Scientists and Engineers (PECASE) award. J. Nathan Kutz is the Robert Bolles and Yasuko Endo Professor of Applied Mathematics at the University of Washington and Director of the NSF AI Institute in Dynamic Systems. He is also Adjunct Professor of Electrical and Computer Engineering, Mechanical Engineering, and Physics and Senior Data-Science Fellow at the eScience Institute. His research interests lie at the intersection of dynamical systems and machine learning. He is an author of three textbooks and has received the Applied Mathematics Boeing Award of Excellence in Teaching and an NSF CAREER award.

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) Steven L. / Kutz Brunton
Parution 04/05/2022
Nb. de pages 614
EAN13 9781009098489

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles

Nos clients ont également acheté

satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription