
Topics in the History of Lie Groups and Algebraic Groups - Volume 21
Résumé
The essays in the first part of the book survey various proofs of the full reducibility of linear representations, the contributions of H. Weyl to representations and invariant theory for semisimple Lie groups, and conclude with a chapter on E. Cartan's theory of symmetric spaces and Lie groups in the large.
The second part of the book first outlines various contributions to linear algebraic groups in the 19th century, due mainly to E. Study, E. Picard, and above all, L. Maurer. After being abandoned for nearly fifty years, the theory was revived by C. Chevalley and E. Kolchin, and then further developed by many others. This is the focus of Chapter VI. The book concludes with two chapters on the work of Chevalley on Lie groups and Lie algebras and of Kolchin on algebraic groups and the Galois theory of differential fields, which put their contributions to algebraic groups in a broader context.
Professor Borel brings a unique perspective to this study. As an important developer of some of the modern elements of both the differential geometric and the algebraic geometric sides of the theory, he has a particularly deep understanding of the underlying mathematics. His lifelong involvement and his historical research in the subject area give him a special appreciation of the story of its development.
Copublished with the London Mathematical Society. Members of the LMS may order directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners.
Contents
- Overview
- Full reducibility and invariants for $\mathbf{SL}_2(\mathbb C)$
- Hermann Weyl and Lie groups
- Élie Cartan, symmetric spaces and Lie groups
- Linear algebraic groups in the 19th century
- Linear algebraic groups in the 20th century
- The work of Chevalley in Lie groups and algebraic groups
- Algebraic groups and Galois theory in the work of Ellis R. Kolchin
- Name index
- Subject index
- Photo section
Caractéristiques techniques
PAPIER | |
Éditeur(s) | American Mathematical Society (AMS) |
Auteur(s) | Armand Borel |
Parution | 17/12/2001 |
Nb. de pages | 184 |
Format | 18 x 26 |
Couverture | Relié |
Poids | 550g |
Intérieur | Noir et Blanc |
EAN13 | 9780821802885 |
ISBN13 | 978-0-8218-0288-5 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des nombres
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des groupes
- Sciences Mathématiques Mathématiques par matières Analyse Analyse complexe
- Sciences Mathématiques Mathématiques par matières Topologie
- Sciences Physique Physique fondamentale Physique et mécanique quantique