
Theory of complex functions
Series: Graduate Texts in Mathematics, Vol. 122
Résumé
The material from function theory, up to the residue calculus, is developed in a lively and vivid style, well motivated throughout by examples and practice exercises. Additionally, there is ample discussion of the historical evolution of the theory, biographical sketches of important contributors, and citations (original language together with English translation) from their classical works.
Yet the book is far from being a mere history of function theory. Even experts will find here few new or long forgotten gems, like Eisenstein's novel approach to the circular functions. This book is destined to accompany many students making their way into a classical area of mathematics which represents the most fruitful example to date of the intimate connection between algebra and analysis. For exam preparation it offers quick access to the essential results and an abundance of interesting inducements. Teachers and interested mathematicians in finance, industry and science will also find reading it profitable, again and again referring to it with pleasure.
Sommaire
- Historical Introduction.
- - Chronological Table.
- - A. Elements of Function Theory.
- - 0. Complex Numbers and Continuous Functions.
- -
- - §1. The field of complex numbers.
- - 1. The field
- - 2. -linear and -linear mappings
- - 3. Scalar product and absolute value
- - 4. Angle-preserving mappings.
- - §2. Fundamental topological concepts.
- - 1. Metric spaces
- - 2. Open and closed sets
- - 3. Convergent sequences. Cluster points
- - 4. Historical remarks on the convergence concept
- - 5. Compact sets.
- - §3. Convergent sequences of complex numbers.
- - 1. Rules of calculation.
- - 2. Cauchy's convergence criterion. Characterization of compact sets.
- - §4. Convergent and absolutely convergent series.
- - 1. Convergent series of complex numbers
- - 2. Absolutely convergent series
- - 3. The rearrangement theorem
- - 4. Historical remarks on absolute convergence
- - 5. Remarks on Riemann's rearrangement theorem
- - 6. A theorem on products of series.
- - §5. Continuous functions.
- ...
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Rheinhold Remmert |
Parution | 30/04/1990 |
Nb. de pages | 450 |
Couverture | Cartonné |
Intérieur | Noir et Blanc |
EAN13 | 9780387971957 |
ISBN13 | 978-0-3879-7195-7 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse