
Résumé
The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra.
This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.
Contents
Preface to the Instruction
Preface to the Student
Acknowledgments
Ch. 1 Vector Spaces 1
Ch. 2 Finite-Dimensional Vector Spaces 21
Ch. 3 Linear Maps 37
Ch. 4 Polynomials 63
Ch. 5 Eigenvalues and Eigenvectors 75
Ch. 6 Inner-Product Spaces 97
Ch. 7 Operators on Inner-Product Spaces 127
Ch. 8 Operators on Complex Vector Spaces 163
Ch. 9 Operators on Real Vectors Spaces 193
Ch. 10 Trace and Determinant 213
Symbol Index 247
Index 249
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Sheldon Axler |
Parution | 01/01/1997 |
Édition | 2eme édition |
Nb. de pages | 246 |
Format | 20 x 24 |
Couverture | Relié |
Poids | 719g |
Intérieur | Noir et Blanc |
EAN13 | 9780387982595 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse